dc.contributor.author
Zimper, Sebastian
dc.contributor.author
Cornalba, Federico
dc.contributor.author
Djurdjevac Conrad, Nataša
dc.contributor.author
Djurdjevac, Ana
dc.date.accessioned
2025-04-10T08:16:25Z
dc.date.available
2025-04-10T08:16:25Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47274
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46992
dc.description.abstract
In particle systems, flocking refers to the phenomenon where particles’ individual velocities eventually align. The Cucker–Smale (CS) model is a well-known mathematical framework that describes this behaviour. Many continuous descriptions of the CS model use PDEs with both particle position and velocity as independent variables, thus providing a full description of the particles' mean-field limit (MFL) dynamics. In this paper, we introduce a novel reduced inertial PDE model consisting of two equations that depend solely on particle position. In contrast to other reduced models, ours is not derived from the MFL, but directly includes the model reduction at the level of the empirical densities, thus allowing for a straightforward connection to the underlying particle dynamics. We present a thorough analytical investigation of our reduced model, showing that: firstly, our reduced PDE satisfies a natural and interpretable continuous definition of flocking; secondly, in specific cases, we can fully quantify the discrepancy between PDE solution and particle system. Our theoretical results are supported by numerical simulations.
en
dc.format.extent
28 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Cucker–Smale model
en
dc.subject
flocking dynamics
en
dc.subject
collective behaviour
en
dc.subject
interacting particle systems
en
dc.subject
reduced inertial PDE model
en
dc.subject
stochastic PDE
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
On reduced inertial PDE models for Cucker–Smale flocking dynamics
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
20240675
dcterms.bibliographicCitation.doi
10.1098/rspa.2024.0675
dcterms.bibliographicCitation.journaltitle
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
dcterms.bibliographicCitation.number
2310
dcterms.bibliographicCitation.volume
481
dcterms.bibliographicCitation.url
https://doi.org/10.1098/rspa.2024.0675
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1471-2946
refubium.resourceType.provider
WoS-Alert