dc.contributor.author
Toprak, Onur
dc.contributor.author
Maudet, Florian
dc.contributor.author
Wollgarten, Markus
dc.contributor.author
Dijck, Charlotte van
dc.contributor.author
Thewes, Roland
dc.contributor.author
Deshpande, Veeresh
dc.contributor.author
Dubourdieu, Catherine
dc.date.accessioned
2025-06-27T10:33:52Z
dc.date.available
2025-06-27T10:33:52Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47264
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46982
dc.description.abstract
A memristive device is presented based on a Ti/GaOx/W stack with an amorphous GaOx layer deposited at a low temperature (250 °C) using plasma-enhanced atomic layer deposition. The device fabrication is compatible with a standard complementary metal oxide semiconductor back-end-of-line technology. The area dependence of the resistance values for both high and low resistance states indicates that switching takes place over the entire device area via a non-filamentary-based mechanism. Evidence is provided that the switching process originates from a field-driven oxygen exchange between the interfacial TiOx layer and the GaOx one as well as from the charging/discharging of interfacial trap states. The devices reveal self-rectifying characteristics with high cycle-to-cycle reproducibility. Multiple states can be programmed with 12 distinct intermediate states during potentiation, and 11 distinct states during depression. This amorphous GaOx-based memristive device with highly reproducible multi-level resistance states shows great potential for enabling artificial synapses in neuromorphic applications.
en
dc.format.extent
10 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
gallium oxide
en
dc.subject
interfacial switching
en
dc.subject
memristive device
en
dc.subject
non-filamentary
en
dc.subject
resistive switching
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Amorphous Gallium-Oxide-Based Non-Filamentary Memristive Device with Highly Repeatable Multiple Resistance States
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2400765
dcterms.bibliographicCitation.doi
10.1002/aelm.202400765
dcterms.bibliographicCitation.journaltitle
Advanced Electronic Materials
dcterms.bibliographicCitation.number
8
dcterms.bibliographicCitation.volume
11
dcterms.bibliographicCitation.url
https://doi.org/10.1002/aelm.202400765
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2199-160X
refubium.resourceType.provider
WoS-Alert