dc.contributor.author
Gayen, Diptesh
dc.contributor.author
Schütze, Yannik
dc.contributor.author
Groh, Sébastien
dc.contributor.author
Dzubiella, Joachim
dc.date.accessioned
2025-04-09T11:58:43Z
dc.date.available
2025-04-09T11:58:43Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47252
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46970
dc.description.abstract
Lithium–sulfur (Li/S) batteries are emerging as a next-generation energy storage technology due to their high theoretical energy density and cost-effectiveness. π-Conjugated organosulfur polymers, such as poly(4-(thiophene-3-yl)benzenethiol) (PTBT), have shown promise in overcoming challenges such as the polysulfide shuttle effect by providing a conductive framework and enabling sulfur copolymerization. In these cathodes, cation–π interactions significantly influence Li+ diffusion and storage properties in π-conjugated cathodes, but classical OPLS-AA force fields fail to capture these effects. This study employs a bottom-up approach based on density functional theory (DFT) to optimize the nonbonded interaction parameters (OPLS-AA/corr.), particularly for the Li+–π interactions with the PTBT polymer. Following prior work, we used an ion-induced dipole potential to model the cation–π interactions. The impact of the solvent on the PTBT monomers was examined by computing the potential of mean force (PMF) between PTBT monomers and Li+ ions in both explicit and implicit solvents using the Boltzmann inversion of probability distributions close to room temperature. In the implicit solvent case, the magnitude of the binding free energy decreased with increasing dielectric constant, as the dominant electrostatics scaled with the dielectric constant. In contrast, in the explicit solvent case, considering the mixtures of organic solvent DME and DOL, the binding free energy shows minimal dependence on solvent composition due to the competing interaction of TBT and Li+ with the solvent molecules. However, increasing salt concentration decreases the binding free energy due to Debye–Hückel screening effects. In general, this work suggests that the optimized parameters can be widely used in the simulation of polymers in electrolytes for the Li/S battery to enhance the representation of cation–π interactions for a fixed charge force field.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
lithium–sulfur batteries
en
dc.subject
molecular dynamics
en
dc.subject
conjugated organosulfur polymers
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Optimizing cation–π force fields for molecular dynamics studies of competitive solvation in conjugated organosulfur polymers for lithium–sulfur batteries
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1039/D4CP04484C
dcterms.bibliographicCitation.journaltitle
Physical Chemistry Chemical Physics
dcterms.bibliographicCitation.number
11
dcterms.bibliographicCitation.pagestart
5655
dcterms.bibliographicCitation.pageend
5668
dcterms.bibliographicCitation.volume
27
dcterms.bibliographicCitation.url
https://doi.org/10.1039/D4CP04484C
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1463-9084
refubium.resourceType.provider
WoS-Alert