dc.contributor.author
Sousa‐Pinto, Bernardo
dc.contributor.author
Schünemann, Holger J.
dc.contributor.author
Sá‐Sousa, Ana
dc.contributor.author
Vieira, Rafael José
dc.contributor.author
Amaral, Rita
dc.contributor.author
Anto, Josep M.
dc.contributor.author
Klimek, Ludger
dc.contributor.author
Czarlewski, Wienczyslawa
dc.contributor.author
Mullol, Joaquim
dc.contributor.author
Pfaar, Oliver
dc.contributor.author
Bedbrook, Anna
dc.contributor.author
Brussino, Luisa
dc.contributor.author
Kvedariene, Violeta
dc.contributor.author
Larenas‐Linnemann, Désirée E.
dc.contributor.author
Okamoto, Yoshitaka
dc.contributor.author
Ventura, Maria Teresa
dc.contributor.author
Agache, Ioana
dc.contributor.author
Ansotegui, Ignacio J.
dc.contributor.author
Bergmann, Karl C.
dc.contributor.author
Bosnic‐Anticevich, Sinthia
dc.contributor.author
Canonica, G. Walter
dc.contributor.author
Cardona, Victoria
dc.contributor.author
Carreiro‐Martins, Pedro
dc.contributor.author
Casale, Thomas
dc.contributor.author
Cecchi, Lorenzo
dc.contributor.author
Chivato, Tomas
dc.contributor.author
Chu, Derek K.
dc.contributor.author
Cingi, Cemal
dc.contributor.author
Costa, Elísio M.
dc.contributor.author
Cruz, Alvaro A.
dc.contributor.author
Del Giacco, Stefano
dc.contributor.author
Devillier, Philippe
dc.contributor.author
Eklund, Patrik
dc.contributor.author
Fokkens, Wytske J.
dc.contributor.author
Gemicioglu, Bilun
dc.contributor.author
Haahtela, Tari
dc.contributor.author
Ivancevich, Juan Carlos
dc.contributor.author
Ispayeva, Zhanat
dc.contributor.author
Jutel, Marek
dc.contributor.author
Kuna, Piotr
dc.contributor.author
Kaidashev, Igor
dc.contributor.author
Khaitov, Musa
dc.contributor.author
Kraxner, Helga
dc.contributor.author
Laune, Daniel
dc.contributor.author
Lipworth, Brian
dc.contributor.author
Louis, Renaud
dc.contributor.author
Makris, Michael
dc.contributor.author
Monti, Riccardo
dc.contributor.author
Morais‐Almeida, Mario
dc.contributor.author
Mösges, Ralph
dc.contributor.author
Niedoszytko, Marek
dc.contributor.author
Papadopoulos, Nikolaos G.
dc.contributor.author
Patella, Vincenzo
dc.contributor.author
Pham‐Thi, Nhân
dc.contributor.author
Regateiro, Frederico S.
dc.contributor.author
Reitsma, Sietze
dc.contributor.author
Rouadi, Philip W.
dc.contributor.author
Samolinski, Boleslaw
dc.contributor.author
Sheikh, Aziz
dc.contributor.author
Sova, Milan
dc.contributor.author
Todo‐Bom, Ana
dc.contributor.author
Taborda‐Barata, Luis
dc.contributor.author
Toppila‐Salmi, Sanna
dc.contributor.author
Sastre, Joaquin
dc.contributor.author
Tsiligianni, Ioanna
dc.contributor.author
Valiulis, Arunas
dc.contributor.author
Vandenplas, Olivier
dc.contributor.author
Wallace, Dana
dc.contributor.author
Waserman, Susan
dc.contributor.author
Yorgancioglu, Arzu
dc.contributor.author
Zidarn, Mihaela
dc.contributor.author
Zuberbier, Torsten
dc.contributor.author
Fonseca, Joao A.
dc.contributor.author
Bousquet, Jean
dc.date.accessioned
2025-04-08T15:55:26Z
dc.date.available
2025-04-08T15:55:26Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47226
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46944
dc.description.abstract
Introduction
Data from mHealth apps can provide valuable information on rhinitis control and treatment patterns. However, in MASK-air®, these data have only been analyzed cross-sectionally, without considering the changes of symptoms over time. We analyzed data from MASK-air® longitudinally, clustering weeks according to reported rhinitis symptoms.
Methods
We analyzed MASK-air® data, assessing the weeks for which patients had answered a rhinitis daily questionnaire on all 7 days. We firstly used k-means clustering algorithms for longitudinal data to define clusters of weeks according to the trajectories of reported daily rhinitis symptoms. Clustering was applied separately for weeks when medication was reported or not. We compared obtained clusters on symptoms and rhinitis medication patterns. We then used the latent class mixture model to assess the robustness of results.
Results
We analyzed 113,239 days (16,177 complete weeks) from 2590 patients (mean age ± SD = 39.1 ± 13.7 years). The first clustering algorithm identified ten clusters among weeks with medication use: seven with low variability in rhinitis control during the week and three with highly-variable control. Clusters with poorly-controlled rhinitis displayed a higher frequency of rhinitis co-medication, a more frequent change of medication schemes and more pronounced seasonal patterns. Six clusters were identified in weeks when no rhinitis medication was used, displaying similar control patterns. The second clustering method provided similar results. Moreover, patients displayed consistent levels of rhinitis control, reporting several weeks with similar levels of control.
Conclusions
We identified 16 patterns of weekly rhinitis control. Co-medication and medication change schemes were common in uncontrolled weeks, reinforcing the hypothesis that patients treat themselves according to their symptoms.
en
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
mobile health
en
dc.subject
patient-reported outcomes
en
dc.subject
real-world data
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Consistent trajectories of rhinitis control and treatment in 16,177 weeks: The <scp>MASK</scp>‐air® longitudinal study
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1111/all.15574
dcterms.bibliographicCitation.journaltitle
Allergy
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.originalpublishername
Wiley
dcterms.bibliographicCitation.pagestart
968
dcterms.bibliographicCitation.pageend
983
dcterms.bibliographicCitation.volume
78
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.funding
DEAL Wiley
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
36325824
dcterms.isPartOf.issn
0105-4538
dcterms.isPartOf.eissn
1398-9995