dc.contributor.editor
Wulff, Peter
dc.contributor.editor
Kubsch, Marcus
dc.contributor.editor
Krist, Christina
dc.date.accessioned
2025-03-31T07:34:53Z
dc.date.available
2025-03-31T07:34:53Z
dc.identifier.isbn
978-3-031-74226-2
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47093
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46810
dc.description.abstract
This open access textbook offers science education researchers a hands-on guide for learning, critically examining, and integrating machine learning (ML) methods into their science education research projects. These methods power many artificial intelligence (AI)-based technologies and are widely adopted in science education research. ML can expand the methodological toolkit of science education researchers and provide novel opportunities to gain insights on science-related learning and teaching processes, however, applying ML poses novel challenges and is not suitable for every research context.
The volume first introduces the theoretical underpinnings of ML methods and their connections to methodological commitments in science education research. It then presents exemplar case studies of ML uses in both formal and informal science education settings. These case studies include open-source data, executable programming code, and explanations of the methodological criteria and commitments guiding ML use in each case. The textbook concludes with a discussion of opportunities and potential future directions for ML in science education.
This textbook is a valuable resource for science education lecturers, researchers, under-graduate, graduate and postgraduate students seeking new ways to apply ML in their work.
en
dc.format.extent
ix, 369 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Science Education
en
dc.subject
Study and Learning Skills
en
dc.subject
Machine Learning
en
dc.subject.ddc
300 Sozialwissenschaften::370 Bildung und Erziehung::370 Bildung und Erziehung
dc.subject.ddc
500 Naturwissenschaften und Mathematik::500 Naturwissenschaften::500 Naturwissenschaften und Mathematik
dc.title
Applying Machine Learning in Science Education Research
dc.identifier.urn
urn:nbn:de:kobv:188-refubium-47093-1
dc.title.subtitle
When, How, and Why?
dcterms.bibliographicCitation.doi
10.1007/978-3-031-74227-9
dcterms.bibliographicCitation.originalpublishername
Springer
dcterms.bibliographicCitation.originalpublisherplace
Cham
dcterms.bibliographicCitation.url
https://doi.org/10.1007/978-3-031-74227-9
refubium.affiliation
Physik
refubium.affiliation.other
Didaktik der Physik

refubium.funding
Open Access Monographie
refubium.note.author
Die Publikation wurde ermöglicht durch eine Ko-Finanzierung für Open-Access-Monografien und –Sammelbände der Freien Universität Berlin.
de
refubium.resourceType.isindependentpub
yes
refubium.series.name
Springer Texts in Education
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access
dc.identifier.eisbn
978-3-031-74227-9
dcterms.isPartOf.issn
2366-7672
dcterms.isPartOf.eissn
2366-7680