dc.contributor.author
Schweizer, Leonille
dc.contributor.author
Seegerer, Philipp
dc.contributor.author
Kim, Hee‐yeong
dc.contributor.author
Saitenmacher, René
dc.contributor.author
Muench, Amos
dc.contributor.author
Barnick, Liane
dc.contributor.author
Osterloh, Anja
dc.contributor.author
Dittmayer, Carsten
dc.contributor.author
Jödicke, Ruben
dc.contributor.author
Pehl, Debora
dc.contributor.author
Reinhardt, Annekathrin
dc.contributor.author
Ruprecht, Klemens
dc.contributor.author
Stenzel, Werner
dc.contributor.author
Wefers, Annika K.
dc.contributor.author
Harter, Patrick N.
dc.contributor.author
Schüller, Ulrich
dc.contributor.author
Heppner, Frank L.
dc.contributor.author
Alber, Maximilian
dc.contributor.author
Müller, Klaus‐Robert
dc.contributor.author
Klauschen, Frederick
dc.date.accessioned
2025-03-28T15:57:19Z
dc.date.available
2025-03-28T15:57:19Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47083
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46800
dc.description.abstract
Aim
Analysis of cerebrospinal fluid (CSF) is essential for diagnostic workup of patients with neurological diseases and includes differential cell typing. The current gold standard is based on microscopic examination by specialised technicians and neuropathologists, which is time-consuming, labour-intensive and subjective.
Methods
We, therefore, developed an image analysis approach based on expert annotations of 123,181 digitised CSF objects from 78 patients corresponding to 15 clinically relevant categories and trained a multiclass convolutional neural network (CNN).
Results
The CNN classified the 15 categories with high accuracy (mean AUC 97.3%). By using explainable artificial intelligence (XAI), we demonstrate that the CNN identified meaningful cellular substructures in CSF cells recapitulating human pattern recognition. Based on the evaluation of 511 cells selected from 12 different CSF samples, we validated the CNN by comparing it with seven board-certified neuropathologists blinded for clinical information. Inter-rater agreement between the CNN and the ground truth was non-inferior (Krippendorff's alpha 0.79) compared with the agreement of seven human raters and the ground truth (mean Krippendorff's alpha 0.72, range 0.56–0.81). The CNN assigned the correct diagnostic label (inflammatory, haemorrhagic or neoplastic) in 10 out of 11 clinical samples, compared with 7–11 out of 11 by human raters.
Conclusions
Our approach provides the basis to overcome current limitations in automated cell classification for routine diagnostics and demonstrates how a visual explanation framework can connect machine decision-making with cell properties and thus provide a novel versatile and quantitative method for investigating CSF manifestations of various neurological diseases.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
cell detection
en
dc.subject
cerebrospinal fluid
en
dc.subject
deep learning
en
dc.subject
explainable AI
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Analysing cerebrospinal fluid with explainable deep learning: From diagnostics to insights
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e12866
dcterms.bibliographicCitation.doi
10.1111/nan.12866
dcterms.bibliographicCitation.journaltitle
Neuropathology and Applied Neurobiology
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.originalpublishername
Wiley
dcterms.bibliographicCitation.volume
49
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.funding
DEAL Wiley
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
36519297
dcterms.isPartOf.issn
0305-1846
dcterms.isPartOf.eissn
1365-2990