dc.contributor.author
vom Ende, Frederik
dc.date.accessioned
2025-03-27T11:12:15Z
dc.date.available
2025-03-27T11:12:15Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47061
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46778
dc.description.abstract
We present a simple, dimension-independent criterion which guarantees that some quantum channel Φ is divisible, i.e., that there exists a non-trivial factorization Φ = Φ1Φ2. The idea is to first define an “elementary” channel Φ2 and then to analyze when is completely positive. The sufficient criterion obtained this way—which even yields an explicit factorization of Φ—is that one has to find orthogonal unit vectors x, x⊥ such that where is the Kraus subspace of Φ and is its orthogonal complement. Of course, using linearity this criterion can be reduced to finitely many equalities. Generically, this division even lowers the Kraus rank which is why repeated application—if possible—results in a factorization of Φ into in some sense “simple” channels. Finally, be aware that our techniques are not limited to the particular elementary channel we chose.
en
dc.format.extent
12 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Quantum mechanical systems and processes
en
dc.subject
Quantum dynamical map
en
dc.subject
Kraus operators
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
A sufficient criterion for divisibility of quantum channels
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
104727
dcterms.bibliographicCitation.articlenumber
032201
dcterms.bibliographicCitation.doi
10.1063/5.0231812
dcterms.bibliographicCitation.journaltitle
Journal of Mathematical Physics
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.originalpublishername
American Institute of Physics (AIP)
dcterms.bibliographicCitation.originalpublisherplace
Melville, NY
dcterms.bibliographicCitation.volume
66
dcterms.bibliographicCitation.url
https://doi.org/10.1063/5.0231812
refubium.affiliation
Physik
refubium.note.author
Gefördert aus Open-Access-Mitteln der Freien Universität Berlin.
de
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0022-2488
dcterms.isPartOf.eissn
1089-7658