dc.contributor.author
Marcelli, Giorgia
dc.contributor.author
Bottinelli Montandon, Tecla
dc.contributor.author
Ebrahimi Viand, Roya
dc.contributor.author
Höfling, Felix
dc.date.accessioned
2025-03-27T10:58:37Z
dc.date.available
2025-03-27T10:58:37Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47059
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46776
dc.description.abstract
Non-equilibrium molecular dynamics (NEMD) simulations of fluid flow have highlighted the peculiarities of nanoscale flows compared to classical fluid mechanics; in particular, boundary conditions can deviate from the no-slip behavior at macroscopic scales. For fluid flow in slit-shaped nanopores, we demonstrate that surface morphology provides an efficient control on the slip length, which approaches zero when matching the molecular structures of the pore wall and the fluid. Using boundary-driven, energy-conserving NEMD simulations with a pump-like driving mechanism, we examine two types of pore walls—mimicking a crystalline and an amorphous material—that exhibit markedly different surface resistances to flow. The resulting flow velocity profiles are consistent with Poiseuille theory for incompressible, Newtonian fluids when adjusted for surface slip. For the two pores, we observe partial slip and no-slip behavior, respectively. The hydrodynamic permeability corroborates that the simulated flows are in the Darcy regime. However, the confinement of the fluid gives rise to an effective viscosity below its bulk value; wide pores exhibit a crossover between boundary and bulk-like flows. In addition, the thermal isolation of the flow causes a linear increase in fluid temperature along the flow, which we relate to strong viscous dissipation and heat convection, utilizing conservation laws of fluid mechanics. Noting that the investigated fluid model does not form droplets, our findings challenge the universality of previously reported correlations between slippage, solvophobicity, and a depletion zone. Furthermore, they underscore the need for molecular-scale modeling to accurately capture the fluid dynamics near boundaries and in nanoporous materials, where macroscopic models may not be applicable.
en
dc.format.extent
17 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Molecular dynamics
en
dc.subject
Hydro-thermodynamics
en
dc.subject
Molecular liquids
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Fluid flow inside slit-shaped nanopores: The role of surface morphology at the molecular scale
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
104724
dcterms.bibliographicCitation.articlenumber
104101
dcterms.bibliographicCitation.doi
10.1063/5.0246573
dcterms.bibliographicCitation.journaltitle
The Journal of Chemical Physics
dcterms.bibliographicCitation.number
10
dcterms.bibliographicCitation.originalpublishername
American Institute of Physics (AIP)
dcterms.bibliographicCitation.originalpublisherplace
Melville, NY
dcterms.bibliographicCitation.volume
162
dcterms.bibliographicCitation.url
https://doi.org/10.1063/5.0246573
refubium.affiliation
Physik
refubium.note.author
Gefördert aus Open-Access-Mitteln der Freien Universität Berlin.
de
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0021-9606
dcterms.isPartOf.eissn
1089-7690