dc.contributor.author
Keyl, Julius
dc.contributor.author
Keyl, Philipp
dc.contributor.author
Montavon, Grégoire
dc.contributor.author
Hosch, René
dc.contributor.author
Brehmer, Alexander
dc.contributor.author
Mochmann, Liliana
dc.contributor.author
Jurmeister, Philipp
dc.contributor.author
Dernbach, Gabriel
dc.contributor.author
Kim, Moon
dc.contributor.author
Koitka, Sven
dc.date.accessioned
2025-03-21T08:35:36Z
dc.date.available
2025-03-21T08:35:36Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46957
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46672
dc.description.abstract
Despite advances in precision oncology, clinical decision-making still relies on limited variables and expert knowledge. To address this limitation, we combined multimodal real-world data and explainable artificial intelligence (xAI) to introduce AI-derived (AID) markers for clinical decision support. We used xAI to decode the outcome of 15,726 patients across 38 solid cancer entities based on 350 markers, including clinical records, image-derived body compositions, and mutational tumor profiles. xAI determined the prognostic contribution of each clinical marker at the patient level and identified 114 key markers that accounted for 90% of the neural network’s decision process. Moreover, xAI enabled us to uncover 1,373 prognostic interactions between markers. Our approach was validated in an independent cohort of 3,288 patients with lung cancer from a US nationwide electronic health record-derived database. These results show the potential of xAI to transform the assessment of clinical variables and enable personalized, data-driven cancer care.
en
dc.format.extent
32 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Machine learning
en
dc.subject
Prognostic markers
en
dc.subject
Translational research
en
dc.subject
Tumour biomarkers
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::615 Pharmakologie, Therapeutik
dc.title
Decoding pan-cancer treatment outcomes using multimodal real-world data and explainable artificial intelligence
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1038/s43018-024-00891-1
dcterms.bibliographicCitation.journaltitle
Nature Cancer
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.pagestart
307
dcterms.bibliographicCitation.pageend
322
dcterms.bibliographicCitation.volume
6
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s43018-024-00891-1
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2662-1347
refubium.resourceType.provider
WoS-Alert