dc.contributor.author
Li, Peiyan
dc.contributor.author
Wu, Na
dc.contributor.author
Liu, Shanshan
dc.contributor.author
Cheng, Yu
dc.contributor.author
Gong, Piming
dc.contributor.author
Tong, Junwei
dc.contributor.author
Liu, Jianan
dc.contributor.author
He, Wei
dc.contributor.author
Xiu, Faxian
dc.contributor.author
Zhao, Jimin
dc.date.accessioned
2025-03-21T07:11:16Z
dc.date.available
2025-03-21T07:11:16Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46952
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46667
dc.description.abstract
The increasing demand for denser information storage and faster data processing has fueled a keen interest in exploring spin currents up to terahertz (THz) frequencies. Emergent 2D intrinsic magnetic materials constitute a novel and highly controllable platform to access such femtosecond spin dynamics at atomic layer thickness. However, the function of 2D van der Waals magnets are limited by their Curie temperatures, which are usually low. Here, in a 2D superlattice (Fe3GeTe2/CrSb)3, we demonstrate ultrafast laser-induced spin current generation and THz radiation at room temperature, overcoming the challenge of the Curie temperature of Fe3GeTe2 being only 206 K. In tandem with time-resolved magneto-optical Kerr effect measurements and first-principles calculations, we further elucidate the origin of the spin currents—a laser-enhanced proximity effect manifested as a laser-induced reduction of interlayer distance and enhanced electron exchange interactions, which causes transient spin polarization in the heterostructure. Our findings present an innovative, magnetic-element-free route for generating ultrafast spin currents within the 2D limit, underscoring the significant potential of laser THz emission spectroscopy in investigating laser-induced extraordinary spin dynamics.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
ultrafast terahertz spin current
en
dc.subject
2D superlattice (Fe3GeTe2/CrSb)3
en
dc.subject
laser-enhanced proximity effect
en
dc.subject
above Curie temperature
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Above-Curie-temperature ultrafast terahertz emission and spin current generation in a 2D superlattice (Fe3GeTe2/CrSb)3
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
nwae447
dcterms.bibliographicCitation.doi
10.1093/nsr/nwae447
dcterms.bibliographicCitation.journaltitle
National Science Review
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.volume
12
dcterms.bibliographicCitation.url
https://doi.org/10.1093/nsr/nwae447
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2053-714X
refubium.resourceType.provider
WoS-Alert