dc.contributor.author
Song, Jiefang
dc.contributor.author
Wang, Lei
dc.contributor.author
Dresen, Georg
dc.contributor.author
Martínez-Garzón, Patricia
dc.contributor.author
Vavryčuk, Václav
dc.contributor.author
Bohnhoff, Marco
dc.contributor.author
Lu, Caiping
dc.contributor.author
Kwiatek, Grzegorz
dc.date.accessioned
2025-03-21T06:26:59Z
dc.date.available
2025-03-21T06:26:59Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46946
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46661
dc.description.abstract
We investigate the influence of fault roughness on physical damage prior to large laboratory rock failure and the evolution of the local stress field surrounding the fault zone as macroscopic shear slip approaches. To achieve this, we analyze acoustic emission (AE) data from displacement-driven rock friction experiments conducted on porous sandstone samples containing either a saw-cut (smooth) or a rough fault. Using high-quality AE-derived focal mechanisms and two stress tensor inversion approaches–one considering double-couple (DC) components and the other one incorporating non-DC components, we examine the temporal evolution of the local stress tensor for both smooth and rough faults. Our results show no significant differences between the two stress inversion methods, indicating that non-DC components have no significant influence on the resulting stress tensors in our experiments. As macroscopic shear slip approaches, the principal stress axes surrounding the fault zone gradually rotate, regardless of the initial fault roughness. The observed evolution of stress tensors correlates with the evolving partitioning between volumetric and shear deformation, as derived from moment tensor inversion of AEs. Compared to the smooth fault, the rough fault exhibits higher local stress heterogeneity and more erratic fluctuations in AE source-related parameters as loading progresses.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
acoustic emission
en
dc.subject
stress rotation
en
dc.subject
fault surface roughness
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
Laboratory Acoustic Emissions Reveal Stress Rotation From Preparation Processes Toward Fault Slip on Varying Surface Roughness in Granular Materials
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e2024GL113093
dcterms.bibliographicCitation.doi
10.1029/2024GL113093
dcterms.bibliographicCitation.journaltitle
Geophysical Research Letters
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.volume
52
dcterms.bibliographicCitation.url
https://doi.org/10.1029/2024GL113093
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Geophysik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1944-8007
refubium.resourceType.provider
WoS-Alert