dc.contributor.author
Schnake, Thomas
dc.contributor.author
Jafari, Farnoush Rezaei
dc.contributor.author
Lederer, Jonas
dc.contributor.author
Xiong, Ping
dc.contributor.author
Nakajima, Shinichi
dc.contributor.author
Gugler, Stefan
dc.contributor.author
Montavon, Grégoire
dc.contributor.author
Müller, Klaus-Robert
dc.date.accessioned
2025-03-20T13:51:01Z
dc.date.available
2025-03-20T13:51:01Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46942
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46657
dc.description.abstract
Explainable Artificial Intelligence (XAI) plays a crucial role in fostering transparency and trust in AI systems. Traditional XAI methods typically provide a single level of abstraction for explanations, often in the form of heatmaps in post-hoc attribution methods. Alternatively, XAI offers rule-based explanations that are expressive and composed of logical formulas but often fail to faithfully capture the model’s decision-making process or impose strict limitations on the model’s learning capabilities by requiring it to be inherently self-explainable. We aim to bridge these two approaches by developing post-hoc explanations that attribute relevance to complex logical relationships between input features while faithfully aligning with the model’s intricate prediction processes and imposing no restrictions on the model’s architecture. To this end, we propose a framework called Symbolic XAI, which attributes relevance to symbolic formulas expressing logical relationships between input features. Our method naturally extends propagation-based explanation approaches, such as layer-wise relevance propagation or GNN-LRP, and perturbation-based approaches, such as Shapley values. Beyond relevance attribution of logical formulas for a model’s prediction, our framework introduces a strategy to automatically identify logical formulas that best summarize the model’s decision strategy, eliminating the need to predefine these formulas. We demonstrate the effectiveness of our framework in domains such as natural language processing (NLP), computer vision, and chemistry, where abstract symbolic domain knowledge is abundant and critically valuable to users. In summary, the Symbolic XAI framework provides a local understanding of the model’s decision-making process that is both flexible for customization by the user and human-readable through logical formulas.
en
dc.format.extent
26 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Explainable AI
en
dc.subject
Concept relevance
en
dc.subject
Higher-order explanation
en
dc.subject
Transformers
en
dc.subject
Graph neural networks
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
Towards symbolic XAI — explanation through human understandable logical relationships between features
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
102923
dcterms.bibliographicCitation.doi
10.1016/j.inffus.2024.102923
dcterms.bibliographicCitation.journaltitle
Information Fusion
dcterms.bibliographicCitation.volume
118
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.inffus.2024.102923
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1872-6305
refubium.resourceType.provider
WoS-Alert