dc.contributor.author
Leone, Lorenzo
dc.contributor.author
Bittel, Lennart
dc.date.accessioned
2025-04-03T09:25:06Z
dc.date.available
2025-04-03T09:25:06Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46906
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46621
dc.description.abstract
Magic-state resource theory is a powerful tool with applications in quantum error correction, many-body physics, and classical simulation of quantum dynamics. Despite its broad scope, finding tractable resource monotones has been challenging. Stabilizer entropies have recently emerged as promising candidates (being easily computable and experimentally measurable detectors of nonstabilizerness) though their status as true resource monotones has been an open question ever since. In this Letter, we establish the monotonicity of stabilizer entropies for 𝛼≥2 within the context of magic-state resource theory restricted to pure states. Additionally, we show that linear stabilizer entropies serve as strong monotones. Furthermore, we extend stabilizer entropies to mixed states as monotones via convex roof constructions whose computational evaluation significantly outperforms optimization over stabilizer decompositions for low-rank density matrices. As a direct corollary, we provide improved conversion bounds between resource states, revealing a preferred direction of conversion between magic states. These results conclusively validate the use of stabilizer entropies within magic-state resource theory and establish them as the only known family of monotones that are experimentally measurable and computationally tractable.
en
dc.format.extent
14 Seiten (Manuskriptversion + Appendix)
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Quantum information theory
en
dc.subject
Resource theories
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Stabilizer entropies are monotones for magic-state resource theory
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
104476
dcterms.bibliographicCitation.articlenumber
L040403
dcterms.bibliographicCitation.doi
10.1103/PhysRevA.110.L040403
dcterms.bibliographicCitation.journaltitle
Physical Review A
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.originalpublishername
American Physical Society
dcterms.bibliographicCitation.originalpublisherplace
College Park, MD
dcterms.bibliographicCitation.volume
110 (2024)
dcterms.bibliographicCitation.url
https://link.aps.org/doi/10.1103/PhysRevA.110.L040403
dcterms.rightsHolder.url
https://journals.aps.org/authors/editorial-policies-open-access
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2469-9926
dcterms.isPartOf.eissn
2469-9934