dc.contributor.author
Schmoll, Philipp
dc.contributor.author
Balz, Christian
dc.contributor.author
Lake, Bella
dc.contributor.author
Eisert, Jens
dc.contributor.author
Kshetrimayum, Augustine
dc.date.accessioned
2025-03-28T10:13:57Z
dc.date.available
2025-03-28T10:13:57Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46899
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46614
dc.description.abstract
Aimed at a more realistic classical description of natural quantum systems, we present a two-dimensional tensor network algorithm to study finite temperature properties of frustrated model quantum systems and real quantum materials. For this purpose, we introduce the infinite projected entangled simplex operator ansatz to study thermodynamic properties. To obtain state-of-the-art benchmarking results, we explore the highly challenging spin-1/2 Heisenberg antiferromagnet on the Kagome lattice, a system for which we investigate the melting of the magnetization plateaus at finite magnetic field and temperature. Making a close connection to actual experimental data of real quantum materials, we go on to studying the finite temperature properties of Ca10Cr7O28. We compare the magnetization curve of this material in the presence of an external magnetic field at finite temperature with classically simulated data. As the first theoretical tool that incorporates both thermal fluctuations as well as quantum correlations in the study of this material, our work contributes to settling the existing controversy between the experimental data and previous theoretical works on the magnetization process.
en
dc.format.extent
9 Seiten (Manuskriptversion)
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Frustrated magnetism
en
dc.subject
Strongly correlated systems
en
dc.subject
Tensor network methods
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Finite temperature tensor network algorithm for frustrated two-dimensional quantum materials
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
104450
dcterms.bibliographicCitation.articlenumber
235119
dcterms.bibliographicCitation.doi
10.1103/PhysRevB.109.235119
dcterms.bibliographicCitation.journaltitle
Physical Review B
dcterms.bibliographicCitation.number
23
dcterms.bibliographicCitation.originalpublishername
American Physical Society
dcterms.bibliographicCitation.originalpublisherplace
College Park, MD
dcterms.bibliographicCitation.volume
109 (2024)
dcterms.bibliographicCitation.url
https://link.aps.org/doi/10.1103/PhysRevB.109.235119
dcterms.rightsHolder.url
https://journals.aps.org/authors/editorial-policies-open-access
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2469-9950
dcterms.isPartOf.eissn
2469-9969