dc.contributor.author
Raharinirina, N. Alexia
dc.contributor.author
Gubela, Nils
dc.contributor.author
Börnigen, Daniela
dc.contributor.author
Smith, Maureen Rebecca
dc.contributor.author
Oh, Djin-Ye
dc.contributor.author
Budt, Matthias
dc.contributor.author
Mache, Christin
dc.contributor.author
Schillings, Claudia
dc.contributor.author
Fuchs, Stephan
dc.contributor.author
Kleist, Max von
dc.date.accessioned
2025-03-19T13:34:51Z
dc.date.available
2025-03-19T13:34:51Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46887
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46602
dc.description.abstract
Since the onset of the pandemic, many SARS-CoV-2 variants have emerged, exhibiting substantial evolution in the virus’ spike protein1, the main target of neutralizing antibodies2. A plausible hypothesis proposes that the virus evolves to evade antibody-mediated neutralization (vaccine- or infection-induced) to maximize its ability to infect an immunologically experienced population1,3. Because viral infection induces neutralizing antibodies, viral evolution may thus navigate on a dynamic immune landscape that is shaped by local infection history. Here we developed a comprehensive mechanistic model, incorporating deep mutational scanning data4,5, antibody pharmacokinetics and regional genomic surveillance data, to predict the variant-specific relative number of susceptible individuals over time. We show that this quantity precisely matched historical variant dynamics, predicted future variant dynamics and explained global differences in variant dynamics. Our work strongly suggests that the ongoing pandemic continues to shape variant-specific population immunity, which determines a variant’s ability to transmit, thus defining variant fitness. The model can be applied to any region by utilizing local genomic surveillance data, allows contextualizing risk assessment of variants and provides information for vaccine design.
en
dc.format.extent
27 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Data integration
en
dc.subject
Epidemiology
en
dc.subject
Viral infection
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::616 Krankheiten
dc.title
SARS-CoV-2 evolution on a dynamic immune landscape
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1038/s41586-024-08477-8
dcterms.bibliographicCitation.journaltitle
Nature
dcterms.bibliographicCitation.number
8053
dcterms.bibliographicCitation.pagestart
196
dcterms.bibliographicCitation.pageend
204
dcterms.bibliographicCitation.volume
639
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41586-024-08477-8
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1476-4687
refubium.resourceType.provider
WoS-Alert