dc.contributor.author
Laudan, Janek
dc.contributor.author
Banzhaf, Sabine
dc.contributor.author
Khan, Basit
dc.contributor.author
Nagel, Kai
dc.date.accessioned
2025-03-06T15:20:52Z
dc.date.available
2025-03-06T15:20:52Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46775
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46489
dc.description.abstract
This study presents a framework for integrating traffic simulation with high-resolution air pollution modeling to design adaptive traffic management policies aimed at reducing urban air pollution. Building on prior work that establishes the coupling of the MATSim traffic model with the PALM-4U urban climate model, this second part focuses on implementing a feedback loop to inform traffic management decisions based on simulated air pollution concentration levels. The research explores how traffic volumes and atmospheric conditions, such as boundary layer dynamics, influence air quality throughout the day. In an artificial case study of Berlin, a time-based toll is introduced, aimed at mitigating concentration peaks in the morning hours. The toll scheme is tested in two simulation scenarios and evaluated regarding the effectiveness of reducing air pollution levels, particularly NO2 during the morning hours. The case study results serve to illustrate the framework’s capabilities and highlight the potential of integrating traffic and environmental models for adaptive policy design. The presented approach provides a model for responsive urban traffic management, effectively aligning transportation policies with environmental goals to improve air quality in urban settings.
en
dc.format.extent
25 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
emission modeling
en
dc.subject
air pollution
en
dc.subject
pollution hotspot
en
dc.subject
traffic simulation
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::551 Geologie, Hydrologie, Meteorologie
dc.title
Air Quality-Driven Traffic Management Using High-Resolution Urban Climate Modeling Coupled with a Large Traffic Simulation
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
128
dcterms.bibliographicCitation.doi
10.3390/atmos16020128
dcterms.bibliographicCitation.journaltitle
Atmosphere
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.volume
16
dcterms.bibliographicCitation.url
https://doi.org/10.3390/atmos16020128
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Meteorologie

refubium.funding
MDPI Fremdfinanzierung
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2073-4433