dc.contributor.author
Pazhaniswamy, Sivaraj
dc.contributor.author
Cha, Gihoon
dc.contributor.author
Joshi, Sagar A.
dc.contributor.author
Karuthedath Parameswaran, Abhilash
dc.contributor.author
Jose, Rajan
dc.contributor.author
Pechmann, Sabrina
dc.contributor.author
Christiansen, Silke
dc.contributor.author
Agarwal, Seema
dc.date.accessioned
2025-03-05T13:58:51Z
dc.date.available
2025-03-05T13:58:51Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46747
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46461
dc.description.abstract
Long-term electrochemical cycle life of the LiNi0.5Mn1.5O4 (LNMO) cathode with liquid electrolytes (LEs) and the inadequate knowledge of the cell failure mechanism are the eloquent Achilles’ heel to practical applications despite their large promise to lower the cost of lithium-ion batteries (LIBs). Herein, a strategy for engineering the cathode–LE interface is presented to enhance the cycle life of LIBs. The direct contact between cathode-active particles and LE is controlled by encasing sol–gel-synthesized truncated octahedron-shaped LNMO particles by an ion–electron-conductive (ambipolar) hybrid ceramic–polymer electrolyte (IECHP) via a simple slot-die coating. The IECHP-coated LNMO cathode demonstrated negligible capacity fading in 250 cycles and a capacity retention of ∼90% after 1000 charge–discharge cycles, significantly exceeding that of the uncoated LNMO cathode (a capacity retention of ∼57% after 980 cycles) in 1 M LiPF6 in EC:DMC at 1 C rate. The difference in stability between the two types of cathodes after cycling is examined by focused ion beam scanning electron microscopy and time-of-flight secondary ion mass spectrometry. These studies revealed that the pristine LNMO produces an inactive layer on the cathode surface, reducing ionic transport between the cathode and the electrolyte and increasing the interface resistance. The IECHP coating successfully overcomes these limitations. Therefore, the present work underlines the adaptability of IECHP-coated LNMO as a high-voltage cathode material in a 1 M LiPF6 electrolyte for prolonged use. The proposed strategy is simple and affordable for commercial applications.
en
dc.format.extent
12 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Coating materials
en
dc.subject
Electrochemical cells
en
dc.subject
Electrolytes
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Ceramic–Polymer–Carbon Composite Coating on the Truncated Octahedron-Shaped LNMO Cathode for High Capacity and Extended Cycling in High-Voltage Lithium-Ion Batteries
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
104062
dcterms.bibliographicCitation.doi
10.1021/acs.energyfuels.4c02933
dcterms.bibliographicCitation.journaltitle
Energy & Fuels
dcterms.bibliographicCitation.number
21
dcterms.bibliographicCitation.originalpublishername
ACS
dcterms.bibliographicCitation.originalpublisherplace
Washington, DC
dcterms.bibliographicCitation.pagestart
21456
dcterms.bibliographicCitation.pageend
21467
dcterms.bibliographicCitation.volume
38
dcterms.bibliographicCitation.url
https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02933
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Experimentalphysik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0887-0624
dcterms.isPartOf.eissn
1520-5029