dc.contributor.author
Fiedler, Bernold
dc.contributor.author
Stuke, Hannes
dc.date.accessioned
2025-12-15T11:32:50Z
dc.date.available
2025-12-15T11:32:50Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46718
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46432
dc.description.abstract
In parabolic or hyperbolic PDEs, solutions which remain uniformly bounded for all
real times t = r ∈ R are often called PDE entire or eternal. For a nonlinear example,
consider the quadratic parabolic PDE
wt = wxx + 6w2 − λ, (*)
for 0 < x < 1
2 , under Neumann boundary conditions. By its gradient-like structure,
all real eternal non-equilibrium orbits (r ) of (*) are heteroclinic among equilibria
w = Wn(x). For parameters λ > 0, the trivial homogeneous equilibria are locally
asymptotically stable W0 = −
√
λ/6, and W∞ = +
√
λ/6 of unstable dimension
(Morse index) i (W∞) = 1, 2, 3, . . ., depending on λ. All nontrivial real Wn are
rescaled and properly translated real-valuedWeierstrass elliptic functions with Morse
index i (Wn) = n.We show that the complex time extensions (r+is), of analytic real
heteroclinic orbits (r ) towards W0, are not complex entire. For example, consider
the time-reversible complex-valued solution ψ(s) = (r0 − is) of the nonlinear and
nonconservative quadratic Schrödinger equation
iψs = ψxx + 6ψ2 − λ
with real initial conditionψ0 = (r0). Then there exist real r0 such that ψ(s) blows up
at some finite real times±s∗ = 0. Abstractly, our results are formulated in the setting of
analytic semigroups. They are based on Poincaré non-resonance of unstable eigenvalues
at equilibriaWn, near pitchfork bifurcation. Technically,we have to except discrete
sets of parameters λ, and are currently limited to unstable dimensions i (Wn) ≤ 22,
or to fast unstable manifolds of dimensions d < 1 + √1
2
i (Wn).
en
dc.format.extent
53 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Nonlinear heat equation
en
dc.subject
Schrödinger equation
en
dc.subject
Complex time
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Real eternal PDE solutions are not complex entire: a quadratic parabolic example
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s41808-024-00309-0
dcterms.bibliographicCitation.journaltitle
Journal of Elliptic and Parabolic Equations
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.pagestart
1961
dcterms.bibliographicCitation.pageend
2013
dcterms.bibliographicCitation.volume
11
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s41808-024-00309-0
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2296-9039