dc.contributor.author
He, Ren
dc.contributor.author
Wang, Shiqi
dc.contributor.author
Yang, Linlin
dc.contributor.author
Horta, Sharona
dc.contributor.author
Ding, Yang
dc.contributor.author
Di, Chong
dc.contributor.author
Zhang, Xuesong
dc.contributor.author
Xu, Ying
dc.contributor.author
Ibáñez, Maria
dc.contributor.author
Zhou, Yingtang
dc.contributor.author
Mebs, Stefan
dc.contributor.author
Dau, Holger
dc.contributor.author
Hausmann, Jan Niklas
dc.contributor.author
Huo, Wenyi
dc.contributor.author
Menezes, Prashanth W.
dc.contributor.author
Cabot, Andreu
dc.date.accessioned
2025-08-22T07:04:24Z
dc.date.available
2025-08-22T07:04:24Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46701
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46415
dc.description.abstract
High-entropy materials (HEMs) offer a quasi-continuous spectrum of active sites and have generated great expectations in fields such as electrocatalysis and energy storage. Despite their potential, the complex composition and associated surface phenomena of HEMs pose challenges to their rational design and development. In this context, we have synthesized FeCoNiPdWP high entropy phosphide (HEP) nanoparticles using a low-temperature colloidal method, and explored their application as bifunctional electrocatalysts for the oxygen evolution and reduction reactions (OER/ORR). Our analysis provides a detailed understanding of the individual roles and transformations of each element during OER/ORR operation. Notably, the HEPs exhibit an exceptionally low OER overpotential of 227 mV at 10 mA cm−2, attributed to the reconstructed HEP surface into a FeCoNiPdW high entropy oxyhydroxide with high oxidation states of Fe, Co, and Ni serving as the active sites. Additionally, Pd and W play crucial roles in modulating the electronic structure to optimize the adsorption energy of oxygen intermediates. For the ORR, Pd emerges as the most active component. In the reconstructed catalyst, the strong d–d orbital coupling of especially Pd, Co, and W fine-tunes ORR electron transfer pathways, delivering an ORR half-wave potential of 0.81 V with a pure four-electron reduction mechanism. The practicality of these HEPs catalysts is showcased through the assembly of aqueous zinc–air batteries. These batteries demonstrate a superior specific capacity of 886 mA h gZn−1 and maintain excellent stability over more than 700 hours of continuous operation. Overall, this study not only elucidates the role of each element in HEMs but also establishes a foundational framework for the design and development of next-generation bifunctional oxygen catalysts, broadening the potential applications of these complex materials in advanced energy systems.
en
dc.format.extent
16 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
electrocatalysts
en
dc.subject
Zn–air batteries
en
dc.subject
energy storage
en
dc.subject
high-entropy materials
en
dc.subject
oxygen catalysis
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Active site switching on high entropy phosphides as bifunctional oxygen electrocatalysts for rechargeable/robust Zn–air battery
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
103933
dcterms.bibliographicCitation.doi
10.1039/D4EE01912A
dcterms.bibliographicCitation.journaltitle
Energy & Environmental Science
dcterms.bibliographicCitation.number
19
dcterms.bibliographicCitation.originalpublishername
Royal Society of Chemistry
dcterms.bibliographicCitation.originalpublisherplace
Cambridge
dcterms.bibliographicCitation.pagestart
7193
dcterms.bibliographicCitation.pageend
7208
dcterms.bibliographicCitation.volume
17 (2024)
dcterms.bibliographicCitation.url
https://xlink.rsc.org/?DOI=D4EE01912A
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Experimentalphysik

refubium.note.author
Artikel in Allianz- und Nationallizenzen
de
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1754-5692
dcterms.isPartOf.eissn
1754-5706