dc.contributor.author
Neesemann, Alicia
dc.contributor.author
van Gasselt, Stephan
dc.contributor.author
Jaumann, Ralf
dc.contributor.author
Castillo-Rogez, Julie C.
dc.contributor.author
Raymond, Carol A.
dc.contributor.author
Walter, Sebastian H. G.
dc.contributor.author
Postberg, Frank
dc.date.accessioned
2025-02-27T14:14:06Z
dc.date.available
2025-02-27T14:14:06Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46696
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46410
dc.description.abstract
Over the course of NASA’s Dawn Discovery mission, the onboard framing camera mapped Ceres across a wide wavelength spectrum at varying polar science orbits and altitudes. With increasing resolution, the uniqueness of the 92 km wide, young Occator crater became evident. Its central cryovolcanic dome, Cerealia Tholus, and especially the associated bright carbonate and ammonium chloride deposits—named Cerealia Facula and the thinner, more dispersed Vinalia Faculae—are the surface expressions of a deep brine reservoir beneath Occator. Understandably, this made this crater the target for future sample return mission studies. The planning and preparation for this kind of mission require the characterization of potential landing sites based on the most accurate topography and orthorectified image data. In this work, we demonstrate the capabilities of the freely available and open-source USGS Integrated Software for Imagers and Spectrometers (ISIS 3) and Ames Stereo Pipeline (ASP 2.7) in creating high-quality image data products as well as stereophotogrammetric (SPG) and multi-view shape-from-shading (SfS) digital terrain models (DTMs) of the aforementioned spectroscopically challenging features. The main data products of our work are four new DTMs, including one SPG and one SfS DTM based on High-Altitude Mapping Orbit (HAMO) (CSH/CXJ) and one SPG and one SfS DTM based on Low-Altitude Mapping Orbit (LAMO) (CSL/CXL), along with selected Extended Mission Orbit 7 (XMO7) framing camera (FC) data. The SPG and SfS DTMs were calculated to a GSD of 1 and 0.5 px, corresponding to 136 m (HAMO SPG), 68 m (HAMO SfS), 34 m (LAMO SPG), and 17 m (LAMO SfS). Finally, we show that the SPG and SfS approaches we used yield consistent results even in the presence of high albedo differences and highlight how our new DTMs differ from those previously created and published by the German Aerospace Center (DLR) and the Jet Propulsion Laboratory (JPL).
en
dc.format.extent
49 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
dwarf planets
en
dc.subject
habitable worlds
en
dc.subject
satellite imagery
en
dc.subject
digital terrain model
en
dc.subject
stereophotogrammetry
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::551 Geologie, Hydrologie, Meteorologie
dc.title
Improved Stereophotogrammetric and Multi-View Shape-from-Shading DTMs of Occator Crater and Its Interior Cryovolcanism-Related Bright Spots
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
437
dcterms.bibliographicCitation.doi
10.3390/rs17030437
dcterms.bibliographicCitation.journaltitle
Remote Sensing
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.volume
17
dcterms.bibliographicCitation.url
https://doi.org/10.3390/rs17030437
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Planetologie und Fernerkundung

refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
de
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2072-4292