dc.contributor.author
Shi, Jia
dc.contributor.author
Tanentzap, Andrew J.
dc.contributor.author
Sun, Yuanze
dc.contributor.author
Wang, Jianjun
dc.contributor.author
Xing, Baoshan
dc.contributor.author
Rillig, Matthias C.
dc.contributor.author
Li, Changchao
dc.contributor.author
Jin, Ling
dc.contributor.author
Wang, Fang
dc.contributor.author
Adyel, Tanveer M.
dc.date.accessioned
2025-03-05T12:49:33Z
dc.date.available
2025-03-05T12:49:33Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46604
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46318
dc.description.abstract
Microplastic pollution in terrestrial ecosystems threatens to destabilize large soil carbon stocks that help to mitigate climate change. Carbon-based substrates can release from microplastics and contribute to terrestrial carbon pools, but how these emerging organic compounds influence carbon mineralization and sequestration remains unknown. Here, microcosm experiments are conducted to determine the bioavailability of microplastic-derived dissolved organic matter (MP-DOM) in soils and its contribution to mineral-associated carbon pool. The underlying mechanisms are identified by estimating its spectroscopic and molecular signatures and comparing its sorption properties on model minerals with natural organic matter (NOM). The results show that MP-DOM leads to 21–576% higher CO2 emissions and 34–83% lower mineral-associated organic carbon in soils than NOM, depending on the type of plastic polymer. DOM from biodegradable microplastics induces higher CO2 emissions than conventional microplastics. It is found that MP-DOM is 7.96 times more labile than NOM, making it more accessible for microbial utilization. The lower degree of humification, fewer polar functional groups, and higher H/C ratios in MP-DOM also led to 3.96 times less sorption with mineral particles. The findings provide insights into the effects of microplastics on soil carbon storage and highlight their consequences for wider terrestrial carbon cycling and climate warming.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
CO2 emission
en
dc.subject
microplastic-derived dissolved organic matter
en
dc.subject
microplastics
en
dc.subject
mineral-associated organic carbon
en
dc.subject
natural organic matter
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Microplastics Generate Less Mineral Protection of Soil Carbon and More CO2 Emissions
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2409585
dcterms.bibliographicCitation.doi
10.1002/advs.202409585
dcterms.bibliographicCitation.journaltitle
Advanced Science
dcterms.bibliographicCitation.number
7
dcterms.bibliographicCitation.volume
12
dcterms.bibliographicCitation.url
https://doi.org/10.1002/advs.202409585
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Biologie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2198-3844
refubium.resourceType.provider
WoS-Alert