dc.contributor.author
Caccialupi, Guido
dc.contributor.author
Schmidt, Timo Torsten
dc.contributor.author
Nierhaus, Till
dc.contributor.author
Wesolek, Sara
dc.contributor.author
Esmeyer, Marlon
dc.contributor.author
Blankenburg, Felix
dc.date.accessioned
2025-02-12T13:11:01Z
dc.date.available
2025-02-12T13:11:01Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46569
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46283
dc.description.abstract
Previous functional magnetic resonance imaging (fMRI) studies have shown that activity in premotor and parietal brain-regions
covaries with the intensity of upcoming grip-force. However, it remains unclear how information about the intended grip-force
intensity is initially represented and subsequently transformed into a motor code before motor execution. In this fMRI study, we
used multivoxel pattern analysis (MVPA) to decode where and when information about grip-force intensities is parametrically
coded in the brain. Human participants performed a delayed grip-force task in which one of four cued levels of grip-force inten-
sity had to be maintained in working memory (WM) during a 9-s delay-period preceding motor execution. Using time-resolved
MVPA with a searchlight approach and support vector regression, we tested which brain regions exhibit multivariate WM codes
of anticipated grip-force intensities. During the early delay period, we observed above-chance decoding in the ventromedial pre-
frontal cortex (vmPFC). During the late delay period, we found a network of action-specific brain regions, including the bilateral
intraparietal sulcus (IPS), left dorsal premotor cortex (l-PMd), and supplementary motor areas. Additionally, cross-regression
decoding was employed to test for temporal generalization of activation patterns between early and late delay periods with those
during cue presentation and motor execution. Cross-regression decoding indicated temporal generalization to the cue period
in the vmPFC and to motor-execution in the l-IPS and l-PMd. Together, these findings suggest that the WM representation of
grip-force intensities undergoes a transformation where the vmPFC encodes information about the intended grip-force, which is
subsequently converted into a motor code in the l-IPS and l-PMd before execution.
en
dc.format.extent
18 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
action selection
en
dc.subject
motor planning
en
dc.subject
prospective working memory
en
dc.subject
working memory
en
dc.subject.ddc
100 Philosophie und Psychologie::150 Psychologie::150 Psychologie
dc.title
Decoding Parametric Grip-Force Anticipation From fMRI Data
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e70154
dcterms.bibliographicCitation.doi
10.1002/hbm.70154
dcterms.bibliographicCitation.journaltitle
Human Brain Mapping
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.volume
46
dcterms.bibliographicCitation.url
https://doi.org/10.1002/hbm.70154
refubium.affiliation
Erziehungswissenschaft und Psychologie
refubium.affiliation.other
Arbeitsbereich Neurocomputation and Neuroimaging

refubium.funding
DEAL Wiley
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1065-9471
dcterms.isPartOf.eissn
1097-0193