dc.contributor.author
Kaarnioja, Vesa
dc.date.accessioned
2025-02-05T09:54:11Z
dc.date.available
2025-02-05T09:54:11Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46492
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46205
dc.description.abstract
A collection of test integrals introduced by Genz (1984) has remained popular to this day for assessing the robustness of high-dimensional numerical integration algorithms. However, the explicit solutions to these integrals do not appear to be readily available in the existing literature: typically the true values of the test integrals are simply approximated using “overkill” numerical solutions. In this paper, analytic solutions are presented for the Genz test integrals
∫0
⋯
1
∫0
cos
(
2𝜋 𝑤1 +
Σ𝑑
𝑖=1
𝑐𝑖𝑥𝑖
)
d𝑥𝑑 ⋯ d𝑥1 = 2𝑑 cos
(
2𝜋 𝑤1 + 12
Σ𝑑
𝑖=1
𝑐𝑖
)Π𝑑
𝑖=1
sin( 𝑐𝑖
2 )
𝑐𝑖
,
1
∫0
⋯
1
∫0
Π𝑑
𝑖=1
1
𝑐−2
𝑖 + (𝑥𝑖 − 𝑤𝑖)2 d𝑥𝑑 ⋯ d𝑥1 =
Π𝑑
𝑖=1
𝑐𝑖
(
ar ct an(𝑐𝑖𝑤𝑖) + ar ct an(𝑐𝑖 − 𝑐𝑖𝑤𝑖)
)
,
1
∫0
⋯
1
∫0
(
1 +
Σ𝑑
𝑖=1
𝑐𝑖𝑥𝑖
)−(𝑑+1)
d𝑥𝑑 ⋯ d𝑥1 = 1
𝑑!
Π𝑑𝑖=1 𝑐𝑖
Σ
u⊆{𝑐1 ,…,𝑐𝑑 }
(−1)#u
1 +
Σ
𝑖∈u 𝑖
,
1
∫0
⋯
1
∫0
exp
(
−
Σ𝑑
𝑖=1
𝑐2
𝑖 (𝑥𝑖 − 𝑤𝑖)2
)
d𝑥𝑑 ⋯ d𝑥1 = 𝜋𝑑∕2
2𝑑
Π𝑑
𝑖=1
er f (𝑐𝑖𝑤𝑖) + er f (𝑐𝑖 − 𝑐𝑖𝑤𝑖)
𝑐𝑖
,
1
∫0
⋯
1
∫0
exp
(
−
Σ𝑑
𝑖=1
𝑐𝑖|𝑥𝑖 − 𝑤𝑖|
)
d𝑥𝑑 ⋯ d𝑥1 =
Π𝑑
𝑖=1
exp(𝑐𝑖𝑤𝑖 − 𝑐𝑖) − exp(−𝑐𝑖𝑤𝑖)
𝑐𝑖
,
𝑤1
∫0
𝑤2
∫0
1
∫0
⋯
1
∫0
exp
(Σ𝑑
𝑖=1
𝑐𝑖𝑥𝑖
)
d𝑥𝑑 ⋯ d𝑥3 d𝑥2 d𝑥1 =
Π2
𝑖=1
(exp(𝑐𝑖𝑤𝑖) − 1)
Π𝑑𝑖
=3(exp(𝑐𝑖) − 1)
Π𝑑𝑖
=1 𝑐𝑖
,
where 𝑑 ∈ Z+, 0 < 𝑤𝑖 < 1, and 𝑐𝑖 ∈ R+ for all 𝑖 ∈ {1,…, 𝑑}.
en
dc.format.extent
5 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Genz test integral
en
dc.subject
Product peak
en
dc.subject
Discontinuous
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Explicit solutions of Genz test integrals
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
109444
dcterms.bibliographicCitation.doi
10.1016/j.aml.2024.109444
dcterms.bibliographicCitation.journaltitle
Applied Mathematics Letters
dcterms.bibliographicCitation.volume
163
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.aml.2024.109444
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1873-5452
refubium.resourceType.provider
WoS-Alert