dc.contributor.author
Bai, Mingru
dc.contributor.author
Wang, Ting
dc.contributor.author
Xing, Zhenyu
dc.contributor.author
Huang, Haoju
dc.contributor.author
Wu, Xizheng
dc.contributor.author
Adeli, Mohsen
dc.contributor.author
Wang, Mao
dc.contributor.author
Han, Xianglong
dc.contributor.author
Ye, Ling
dc.contributor.author
Cheng, Chong
dc.date.accessioned
2025-01-29T07:46:30Z
dc.date.available
2025-01-29T07:46:30Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46407
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46120
dc.description.abstract
The clinical treatments of maxillofacial bone defects pose significant challenges due to complex microenvironments, including severe inflammation, high levels of reactive oxygen species (ROS), and potential bacterial infection. Herein, we propose the de novo design of an efficient, versatile, and precise electron-donable heterojunction with synergetic Ru-Cu pair sites (Ru-Cu/EDHJ) for superior biocatalytic regeneration of inflammatory mandible defects and pH-controlled antibacterial therapies. Our studies demonstrate that the unique structure of Ru-Cu/EDHJ enhances the electron density of Ru atoms and optimizes the binding strength of oxygen species, thus improving enzyme-like catalytic performance. Strikingly, this biocompatible Ru-Cu/EDHJ can efficiently switch between ROS scavenging in neutral media and ROS generation in acidic media, thus simultaneously exhibiting superior repair functions and bioadaptive antibacterial properties in treating mandible defects in male mice. We believe synthesizing such biocatalytic heterojunctions with exceptional enzyme-like capabilities will offer a promising pathway for engineering ROS biocatalytic materials to treat trauma, tumors, or infection-caused maxillofacial bone defects.
en
dc.format.extent
22 Seiten
dc.rights
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Bioinspired materials
en
dc.subject
Nanoparticles
en
dc.subject
Preclinical research
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Electron-donable heterojunctions with synergetic Ru-Cu pair sites for biocatalytic microenvironment modulations in inflammatory mandible defects
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2025-01-27T15:14:10Z
dcterms.bibliographicCitation.articlenumber
9592
dcterms.bibliographicCitation.doi
10.1038/s41467-024-53824-y
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
15
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-024-53824-y
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723
refubium.resourceType.provider
DeepGreen