dc.contributor.author
Ringbauer, Martin
dc.contributor.author
Hinsche, Marcel
dc.contributor.author
Feldker, Thomas
dc.contributor.author
Faehrmann, Paul K.
dc.contributor.author
Bermejo-Vega, Juani
dc.contributor.author
Edmunds, Claire L.
dc.contributor.author
Postler, Lukas
dc.contributor.author
Stricker, Roman
dc.contributor.author
Marciniak, Christian D.
dc.contributor.author
Meth, Michael
dc.contributor.author
Pogorelov, Ivan
dc.contributor.author
Blatt, Rainer
dc.contributor.author
Schindler, Philipp
dc.contributor.author
Eisert, Jens
dc.contributor.author
Monz, Thomas
dc.contributor.author
Hangleiter, Dominik
dc.date.accessioned
2025-01-29T07:24:12Z
dc.date.available
2025-01-29T07:24:12Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46406
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46119
dc.description.abstract
Quantum computers are now on the brink of outperforming their classical counterparts. One way to demonstrate the advantage of quantum computation is through quantum random sampling performed on quantum computing devices. However, existing tools for verifying that a quantum device indeed performed the classically intractable sampling task are either impractical or not scalable to the quantum advantage regime. The verification problem thus remains an outstanding challenge. Here, we experimentally demonstrate efficiently verifiable quantum random sampling in the measurement-based model of quantum computation on a trapped-ion quantum processor. We create and sample from random cluster states, which are at the heart of measurement-based computing, up to a size of 4 × 4 qubits. By exploiting the structure of these states, we are able to recycle qubits during the computation to sample from entangled cluster states that are larger than the qubit register. We then efficiently estimate the fidelity to verify the prepared states—in single instances and on average—and compare our results to cross-entropy benchmarking. Finally, we study the effect of experimental noise on the certificates. Our results and techniques provide a feasible path toward a verified demonstration of a quantum advantage.
en
dc.format.extent
9 Seiten
dc.rights
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Quantum information
en
dc.subject
Quantum simulation
en
dc.subject
quantum computation
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Verifiable measurement-based quantum random sampling with trapped ions
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2025-01-27T13:36:04Z
dcterms.bibliographicCitation.articlenumber
106
dcterms.bibliographicCitation.doi
10.1038/s41467-024-55342-3
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
16
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-024-55342-3
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme
![Dieser Normdateneintrag wurde von einer Benutzerin oder einem Benutzer als gültig bestätigt.](/cache_0fdaa16ecf2e120b3856a5a937c7ad56/themes/FuCD/images/authority_control/invisible.gif)
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723
refubium.resourceType.provider
DeepGreen