dc.contributor.author
Prado, Lucia H.
dc.contributor.author
Hayek, Samer
dc.contributor.author
Mazare, Anca
dc.contributor.author
Erceg, Ina
dc.contributor.author
Sarau, George
dc.contributor.author
Christiansen, Silke
dc.contributor.author
Kamaleev, Maksim
dc.contributor.author
Wurmshuber, Michael
dc.contributor.author
Lohbauer, Ulrich
dc.contributor.author
Goldmann, Wolfgang H.
dc.contributor.author
Virtanen, Sannakaisa
dc.contributor.author
Tesler, Alexander B.
dc.date.accessioned
2025-01-17T09:34:36Z
dc.date.available
2025-01-17T09:34:36Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46298
dc.description.abstract
Corrosion and biofouling are wetting‐related phenomena that limit the effective use of metals in aqueous media. Nonwettable surfaces can mitigate the adverse effects of wetting by minimizing contact with water. However, current achievements in this field fall short of meeting industrial requirements due to the short lifetime of plastrons. This study proposes a method to measure the protective sustainability of plastron. Superhydrophobic (SHS) and aerophilic (APhS) surfaces are constructed on lightweight aluminum and are initially analyzed by conventional goniometry, which show comparable values. However, the plastron that develops underwater is substantially different. While SHS exhibit unevenly broken plastron, APhS show uniform, continuous plastron. As an example of the sustained protective performance of plastron, the corrosion resistance of SHS and APhS is presented. Potentiodynamic polarization, impedance spectroscopy, and long‐term immersion in seawater show a drastic enhancement in corrosion resistance, exclusively for APhS. In fact, almost no electrochemical signals are measurable, and no pitting corrosion is observed after 415 days of immersion in seawater. Conversely, SHS show no noticeable improvement and corrode faster than bare Al due to plastron loss. Since goniometric measurements do not provide information on plastron, it is essential to analyze the plastron for any non‐wettable surface utilized underwater.
en
dc.format.extent
16 Seiten
dc.rights
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
air plastron
en
dc.subject
Cassie–Baxter wetting
en
dc.subject
superhydrophobic surfaces
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Aerophilic Surfaces for Sustained Corrosion Protection of Metals Underwater
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2025-01-16T21:33:05Z
dcterms.bibliographicCitation.articlenumber
2407444
dcterms.bibliographicCitation.doi
10.1002/adfm.202407444
dcterms.bibliographicCitation.journaltitle
Advanced Functional Materials
dcterms.bibliographicCitation.number
44
dcterms.bibliographicCitation.volume
34
dcterms.bibliographicCitation.url
https://doi.org/10.1002/adfm.202407444
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Experimentalphysik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1616-301X
dcterms.isPartOf.eissn
1616-3028
refubium.resourceType.provider
DeepGreen