dc.contributor.author
Philipp, Friedrich M.
dc.contributor.author
Schaller, Manuel
dc.contributor.author
Worthmann, Karl
dc.contributor.author
Peitz, Sebastian
dc.contributor.author
Nüske, Feliks
dc.date.accessioned
2025-01-17T08:50:26Z
dc.date.available
2025-01-17T08:50:26Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46293
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46005
dc.description.abstract
We consider the Koopman operator semigroup (Kt)t≥0 associated with stochastic differential equations of the form dXt=AXtdt+BdWt with constant matrices A and B and Brownian motion Wt. We prove that the reproducing kernel Hilbert space HC generated by a Gaussian kernel with a positive definite covariance matrix C is invariant under each Koopman operator Kt if the matrices A, B, and C satisfy the following Lyapunov‐like matrix inequality: AC2+C2A⊤≤2BB⊤. In this course, we prove a characterization concerning the inclusion HC1⊂HC2 of Gaussian RKHSs for two positive definite matrices C1 and C2. The question of whether the sufficient Lyapunov‐condition is also necessary is left as an open problem.
en
dc.format.extent
6 Seiten
dc.rights
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Invariance of Gaussian RKHSs
en
dc.subject
Koopman Operators
en
dc.subject
Stochastic Differential Equations
en
dc.subject
Constant Matrix Coefficients
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Invariance of Gaussian RKHSs Under Koopman Operators of Stochastic Differential Equations With Constant Matrix Coefficients
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2025-01-16T18:56:42Z
dcterms.bibliographicCitation.articlenumber
e202400127
dcterms.bibliographicCitation.doi
10.1002/pamm.202400127
dcterms.bibliographicCitation.journaltitle
PAMM
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
25
dcterms.bibliographicCitation.url
https://doi.org/10.1002/pamm.202400127
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1617-7061
refubium.resourceType.provider
DeepGreen