dc.contributor.author
Neander, Lenard
dc.contributor.author
Hannemann, Cedric
dc.contributor.author
Netz, Roland R.
dc.contributor.author
Sahoo, Anil Kumar
dc.date.accessioned
2025-01-30T06:39:18Z
dc.date.available
2025-01-30T06:39:18Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46178
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45889
dc.description.abstract
Interactions of polyelectrolytes (PEs) with proteins play a crucial role in numerous biological processes, such as the internalization of virus particles into host cells. Although docking, machine learning methods, and molecular dynamics (MD) simulations are utilized to estimate binding poses and binding free energies of small-molecule drugs to proteins, quantitative prediction of the binding thermodynamics of PE-based drugs presents a significant obstacle in computer-aided drug design. This is due to the sluggish dynamics of PEs caused by their size and strong charge–charge correlations. In this paper, we introduce advanced sampling methods based on a force-spectroscopy setup and theoretical modeling to overcome this barrier. We exemplify our method with explicit solvent all-atom MD simulations of the interactions between anionic PEs that show antiviral properties, namely heparin and linear polyglycerol sulfate (LPGS), and the SARS-CoV-2 spike protein receptor binding domain (RBD). Our prediction for the binding free-energy of LPGS to the wild-type RBD matches experimentally measured dissociation constants within thermal energy, kBT, and correctly reproduces the experimental PE-length dependence. We find that LPGS binds to the Delta-variant RBD with an additional free-energy gain of 2.4 kBT, compared to the wild-type RBD, due to the additional presence of two mutated cationic residues contributing to the electrostatic energy gain. We show that the LPGS–RBD binding is solvent dominated and enthalpy driven, though with a large entropy–enthalpy compensation. Our method is applicable to general polymer adsorption phenomena and predicts precise binding free energies and reconfigurational friction as needed for drug and drug-delivery design.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
polyelectrolytes
en
dc.subject
binding thermodynamics
en
dc.subject
polymer elasticity
en
dc.subject
molecular simulation
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::541 Physikalische Chemie
dc.title
Quantitative Prediction of Protein–Polyelectrolyte Binding Thermodynamics: Adsorption of Heparin-Analog Polysulfates to the SARS-CoV-2 Spike Protein RBD
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/jacsau.4c00886
dcterms.bibliographicCitation.journaltitle
JACS Au
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.pagestart
204
dcterms.bibliographicCitation.pageend
216
dcterms.bibliographicCitation.volume
5
dcterms.bibliographicCitation.url
https://doi.org/10.1021/jacsau.4c00886
refubium.affiliation
Physik
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.funding
ACS Publications
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2691-3704