dc.contributor.author
Farhoosh, Shima
dc.contributor.author
Liu, Si
dc.contributor.author
Beyer, Paul
dc.contributor.author
Mebs, Stefan
dc.contributor.author
Haumann, Michael
dc.contributor.author
Dau, Holger
dc.date.accessioned
2025-04-30T08:57:54Z
dc.date.available
2025-04-30T08:57:54Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46160
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45871
dc.description.abstract
Water oxidation, the oxygen evolution reaction (OER), is the anodic process in electrocatalytic production of hydrogen and further green fuels. Transition-metal oxyhydroxides with bulk-phase OER activity of the complete material or amorphized near-surface regions are of prime application interest, but their basic electrochemical properties are insufficiently understood. Here the timescale of functional processes is clarified by time-resolved X-ray absorption spectroscopy and electrochemical impedance spectroscopy (EIS) for a thickness-series of cobalt oxyhydroxides films (about 35–550 nm). At the outer material surface, an electric double-layer is formed in microseconds followed by clearly cobalt-centered redox-state changes of the bulk material in the low millisecond domain and a slow chemical step of O2-formation, within hundreds of milliseconds. Conceptually interesting, the electrode potential likely controls the OER rate indirectly by driving the catalyst material to an increasingly oxidized state which promotes the rate-limiting chemical step. Rate constants are derived for redox chemistry and catalysis from EIS data of low-thickness catalyst films; at higher thicknesses, catalyst-internal charge transport limitations become increasingly relevant. Relations between electrochemically active surface area, double-layer capacitance, and redox (pseudo-)capacitance are discussed. These results can increase the power of EIS analyses and support knowledge-guided optimization of a broader class of OER catalyst materials.
en
dc.format.extent
17 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
electrocatalysis
en
dc.subject
kinetic analyses
en
dc.subject
operando spectroscopy
en
dc.subject
oxygen evolution reaction
en
dc.subject
transition metal oxyhydroxides
en
dc.subject
X-ray absorption spectroscopy
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Water Electrooxidation Kinetics Clarified by Time-Resolved X-Ray Absorption and Electrochemical Impedance Spectroscopy for a Bulk-Active Cobalt Material
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2403818
dcterms.bibliographicCitation.doi
10.1002/aenm.202403818
dcterms.bibliographicCitation.journaltitle
Advanced Energy Materials
dcterms.bibliographicCitation.number
14
dcterms.bibliographicCitation.volume
15
dcterms.bibliographicCitation.url
https://doi.org/10.1002/aenm.202403818
refubium.affiliation
Physik
refubium.funding
DEAL Wiley
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1614-6840