dc.contributor.author
Kostelecky, Jonathan
dc.contributor.author
Ansorge, Cedrick
dc.date.accessioned
2025-01-10T07:11:09Z
dc.date.available
2025-01-10T07:11:09Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46157
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45868
dc.description.abstract
The interplay of surface roughness and stable stratification is investigated by direct numerical
simulation of Ekman flow. Our setup is well within the turbulent regime, reaching a friction
Reynolds number of Reτ ≈ 2700. Further, we reach the verge of the fully rough regime
under neutral conditions with a non-dimensional obstacle height H+ ≈ 40, corresponding
to a z-nought parameter in viscous units z+
0
≈ 2. Stability is imposed via a gradual decrease
of surface buoyancy from neutral (no stratification) to very strong stratification. The reduced
Reynolds number (Reτ ) in comparison to atmospheric problems warrants consideration of
viscous effects on our results, and we demonstrate a correction method that consistently
incorporates viscous effects, thus reducing the spread of data from our numerical results. The
weakly stable regime is maintained at higher stability due to efficient production of turbulence
kinetic energy which counteracts buoyant restoring forces in the presence of roughness.
When scaled according to Monin–Obukhov similarity theory (MOST) our results for weak
stability compares excellent to known formulations based on atmospheric observations. The
coefficients of the stability correction functions formomentum and heat are estimated as βm =
3.45, βh = 5.21 respectively, and we observe a slight but significant increase of the turbulent
Prandtl number with stability. In the very stable regime, global flow properties (e.g. friction
velocity, Obukhov length) oscillate with a decaying amplitude and global intermittency, i.e.
the co-occurrence of turbulent/laminar fluid at large scale, is observed in the presence of
roughness. In such very stable conditions, a strong veering of the surface wind with respect
to the large-scale forcing (< 90◦) is observed.
en
dc.format.extent
36 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Boundary-layer turbulence
en
dc.subject
Direct numerical simulation
en
dc.subject
Monin–Obukhov similarity theory
en
dc.subject
Stable boundary layer
en
dc.subject
Surface roughness
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::551 Geologie, Hydrologie, Meteorologie
dc.title
Surface Roughness in Stratified Turbulent Ekman Flow
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
5
dcterms.bibliographicCitation.doi
10.1007/s10546-024-00895-5
dcterms.bibliographicCitation.journaltitle
Boundary-Layer Meteorology
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
191
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s10546-024-00895-5
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Meteorologie

refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1573-1472