dc.contributor.author
Waller, Lea
dc.contributor.author
Erk, Susanne
dc.contributor.author
Pozzi, Elena
dc.contributor.author
Toenders, Yara J.
dc.contributor.author
Haswell, Courtney C.
dc.contributor.author
Büttner, Marc
dc.contributor.author
Thompson, Paul M.
dc.contributor.author
Schmaal, Lianne
dc.contributor.author
Morey, Rajendra A.
dc.contributor.author
Walter, Henrik
dc.contributor.author
Veer, Ilya M.
dc.date.accessioned
2024-12-19T14:06:14Z
dc.date.available
2024-12-19T14:06:14Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46039
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45749
dc.description.abstract
The reproducibility crisis in neuroimaging has led to an increased demand for standardized data processing workflows. Within the ENIGMA consortium, we developed HALFpipe (Harmonized Analysis of Functional MRI pipeline), an open-source, containerized, user-friendly tool that facilitates reproducible analysis of task-based and resting-state fMRI data through uniform application of preprocessing, quality assessment, single-subject feature extraction, and group-level statistics. It provides state-of-the-art preprocessing using fMRIPrep without the requirement for input data in Brain Imaging Data Structure (BIDS) format. HALFpipe extends the functionality of fMRIPrep with additional preprocessing steps, which include spatial smoothing, grand mean scaling, temporal filtering, and confound regression. HALFpipe generates an interactive quality assessment (QA) webpage to rate the quality of key preprocessing outputs and raw data in general. HALFpipe features myriad post-processing functions at the individual subject level, including calculation of task-based activation, seed-based connectivity, network-template (or dual) regression, atlas-based functional connectivity matrices, regional homogeneity (ReHo), and fractional amplitude of low-frequency fluctuations (fALFF), offering support to evaluate a combinatorial number of features or preprocessing settings in one run. Finally, flexible factorial models can be defined for mixed-effects regression analysis at the group level, including multiple comparison correction. Here, we introduce the theoretical framework in which HALFpipe was developed, and present an overview of the main functions of the pipeline. HALFpipe offers the scientific community a major advance toward addressing the reproducibility crisis in neuroimaging, providing a workflow that encompasses preprocessing, post-processing, and QA of fMRI data, while broadening core principles of data analysis for producing reproducible results. Instructions and code can be found at .
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
harmonization
en
dc.subject
image analysis
en
dc.subject
reproducibility
en
dc.subject
meta-analysis pipeline
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
ENIGMA HALFpipe: Interactive, reproducible, and efficient analysis for resting‐state and task‐based fMRI data
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1002/hbm.25829
dcterms.bibliographicCitation.journaltitle
Human Brain Mapping
dcterms.bibliographicCitation.number
9
dcterms.bibliographicCitation.originalpublishername
Wiley
dcterms.bibliographicCitation.pagestart
2727
dcterms.bibliographicCitation.pageend
2742
dcterms.bibliographicCitation.volume
43
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.funding
DEAL Wiley
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
35305030
dcterms.isPartOf.issn
1065-9471
dcterms.isPartOf.eissn
1097-0193