dc.contributor.author
Haghofer, Andreas
dc.contributor.author
Parlak, Eda
dc.contributor.author
Bartel, Alexander
dc.contributor.author
Donovan, Taryn A.
dc.contributor.author
Assenmacher, Charles-Antoine
dc.contributor.author
Bolfa, Pompei
dc.contributor.author
Dark, Michael J.
dc.contributor.author
Fuchs-Baumgartinger, Andrea
dc.contributor.author
Klang, Andrea
dc.contributor.author
Klopfleisch, Robert
dc.date.accessioned
2025-03-05T12:04:04Z
dc.date.available
2025-03-05T12:04:04Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45915
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45628
dc.description.abstract
Variation in nuclear size and shape is an important criterion of malignancy for many tumor types; however, categorical estimates by pathologists have poor reproducibility. Measurements of nuclear characteristics can improve reproducibility, but current manual methods are time-consuming. The aim of this study was to explore the limitations of estimates and develop alternative morphometric solutions for canine cutaneous mast cell tumors (ccMCTs). We assessed the following nuclear evaluation methods for accuracy, reproducibility, and prognostic utility: (1) anisokaryosis estimates by 11 pathologists; (2) gold standard manual morphometry of at least 100 nuclei; (3) practicable manual morphometry with stratified sampling of 12 nuclei by 9 pathologists; and (4) automated morphometry using deep learning–based segmentation. The study included 96 ccMCTs with available outcome information. Inter-rater reproducibility of anisokaryosis estimates was low (k = 0.226), whereas it was good (intraclass correlation = 0.654) for practicable morphometry of the standard deviation (SD) of nuclear size. As compared with gold standard manual morphometry (area under the ROC curve [AUC] = 0.839, 95% confidence interval [CI] = 0.701–0.977), the prognostic value (tumor-specific survival) of SDs of nuclear area for practicable manual morphometry and automated morphometry were high with an AUC of 0.868 (95% CI = 0.737–0.991) and 0.943 (95% CI = 0.889–0.996), respectively. This study supports the use of manual morphometry with stratified sampling of 12 nuclei and algorithmic morphometry to overcome the poor reproducibility of estimates. Further studies are needed to validate our findings, determine inter-algorithmic reproducibility and algorithmic robustness, and explore tumor heterogeneity of nuclear features in entire tumor sections.
en
dc.format.extent
17 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
anisokaryosis
en
dc.subject
artificial intelligence
en
dc.subject
computer vision
en
dc.subject
mast cell tumor
en
dc.subject
mitotic count
en
dc.subject
nuclear pleomorphism
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::630 Landwirtschaft::630 Landwirtschaft und verwandte Bereiche
dc.title
Nuclear pleomorphism in canine cutaneous mast cell tumors: Comparison of reproducibility and prognostic relevance between estimates, manual morphometry, and algorithmic morphometry
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1177/03009858241295399
dcterms.bibliographicCitation.journaltitle
Veterinary Pathology
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.pagestart
161
dcterms.bibliographicCitation.pageend
177
dcterms.bibliographicCitation.volume
62
dcterms.bibliographicCitation.url
https://doi.org/10.1177/03009858241295399
refubium.affiliation
Veterinärmedizin
refubium.affiliation.other
Institut für Veterinär-Epidemiologie und Biometrie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1544-2217
refubium.resourceType.provider
WoS-Alert