dc.contributor.author
Eberle, Oliver
dc.contributor.author
Büttner, Jochen
dc.contributor.author
el-Hajj, Hassan
dc.contributor.author
Montavon, Grégoire
dc.contributor.author
Müller, Klaus-Robert
dc.contributor.author
Valleriani, Matteo
dc.date.accessioned
2024-12-05T13:14:13Z
dc.date.available
2024-12-05T13:14:13Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45905
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45618
dc.description.abstract
Understanding the evolution and dissemination of human knowledge over time faces challenges due to the abundance of historical materials and limited specialist resources. However, the digitization of historical archives presents an opportunity for AI-supported analysis. This study advances historical analysis by using an atomization-recomposition method that relies on unsupervised machine learning and explainable AI techniques. Focusing on the “Sacrobosco Collection,” consisting of 359 early modern printed editions of astronomy textbooks from European universities (1472–1650), totaling 76,000 pages, our analysis uncovers temporal and geographic patterns in knowledge transformation. We highlight the relevant role of astronomy textbooks in shaping a unified mathematical culture, driven by competition among educational institutions and market dynamics. This approach deepens our understanding by grounding insights in historical context, integrating with traditional methodologies. Case studies illustrate how communities embraced scientific advancements, reshaping astronomic and geographical views and exploring scientific roots amidst a changing world.
en
dc.format.extent
16 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
early modern astronomic tables
en
dc.subject
machine learning analysis
en
dc.subject
historical analysis
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
Historical insights at scale: A corpus-wide machine learning analysis of early modern astronomic tables
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
eadj1719
dcterms.bibliographicCitation.doi
10.1126/sciadv.adj1719
dcterms.bibliographicCitation.journaltitle
Science Advances
dcterms.bibliographicCitation.number
43
dcterms.bibliographicCitation.volume
10
dcterms.bibliographicCitation.url
https://doi.org/10.1126/sciadv.adj1719
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2375-2548
refubium.resourceType.provider
WoS-Alert