dc.contributor.author
Zhao, Haimeng
dc.contributor.author
Lewis, Laura
dc.contributor.author
Kannan, Ishaan
dc.contributor.author
Quek, Yihui
dc.contributor.author
Huang, Hsin-Yuan
dc.contributor.author
Caro, Matthias C.
dc.date.accessioned
2024-12-05T12:28:17Z
dc.date.available
2024-12-05T12:28:17Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45898
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45611
dc.description.abstract
While quantum state tomography is notoriously hard, most states hold little interest to practically minded tomographers. Given that states and unitaries appearing in nature are of bounded gate complexity, it is natural to ask if efficient learning becomes possible. In this work, we prove that to learn a state generated by a quantum circuit with 𝐺 two-qubit gates to a small trace distance, a sample complexity scaling linearly in 𝐺 is necessary and sufficient. We also prove that the optimal query complexity to learn a unitary generated by 𝐺 gates to a small average-case error scales linearly in 𝐺. While sample-efficient learning can be achieved, we show that under reasonable cryptographic conjectures, the computational complexity for learning states and unitaries of gate complexity 𝐺 must scale exponentially in 𝐺. We illustrate how these results establish fundamental limitations on the expressivity of quantum machine-learning models and provide new perspectives on no-free-lunch theorems in unitary learning. Together, our results answer how the complexity of learning quantum states and unitaries relate to the complexity of creating these states and unitaries.
en
dc.format.extent
63 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Computational complexity
en
dc.subject
Machine learning
en
dc.subject
Quantum algorithms & computation
en
dc.subject
Quantum information theory
en
dc.subject
Quantum tomography
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Learning Quantum States and Unitaries of Bounded Gate Complexity
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
040306
dcterms.bibliographicCitation.doi
10.1103/PRXQuantum.5.040306
dcterms.bibliographicCitation.journaltitle
PRX Quantum
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.volume
5
dcterms.bibliographicCitation.url
https://doi.org/10.1103/PRXQuantum.5.040306
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2691-3399
refubium.resourceType.provider
WoS-Alert