dc.contributor.author
Anastos, Michael
dc.contributor.author
Boyadzhiyska, Simona
dc.contributor.author
Rathke, Silas
dc.contributor.author
Rué, Juanjo
dc.date.accessioned
2024-12-05T12:02:00Z
dc.date.available
2024-12-05T12:02:00Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45893
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45606
dc.description.abstract
For a given graph G = (V, E ), we define its nth subdivision as the graph obtained from G by replacing every edge by a path of length n . We also define the mth power of G as the graph on vertex set V where we connect every pair of vertices at distance at most m in G . In this paper, we study the chromatic number of powers of subdivisions of graphs and resolve the case m = n asymptotically. In particular, our result confirms a conjecture of Mozafari-Nia and Iradmusa in the case m = n = 3 in a strong sense.
en
dc.format.extent
6 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
subdivisions
en
dc.subject
chromatic number of powers
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
On the chromatic number of powers of subdivisions of graphs
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1016/j.dam.2024.10.002
dcterms.bibliographicCitation.journaltitle
Discrete Applied Mathematics
dcterms.bibliographicCitation.pagestart
506
dcterms.bibliographicCitation.pageend
511
dcterms.bibliographicCitation.volume
360
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.dam.2024.10.002
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1872-6771
refubium.resourceType.provider
WoS-Alert