dc.contributor.author
Roelli, Philippe
dc.contributor.author
Hu, Huatian
dc.contributor.author
Verhagen, Ewold
dc.contributor.author
Reich, Stephanie
dc.contributor.author
Galland, Christophe
dc.date.accessioned
2024-12-05T11:23:09Z
dc.date.available
2024-12-05T11:23:09Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45885
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45598
dc.description.abstract
Vibrational Raman scattering─a process where light exchanges energy with a molecular vibration through inelastic scattering─is most fundamentally described in a quantum framework where both light and vibration are quantized. When the Raman scatterer is embedded inside a plasmonic nanocavity, as in some sufficiently controlled implementations of surface-enhanced Raman scattering (SERS), the coupled system realizes an optomechanical cavity where coherent and parametrically amplified light–vibration interaction becomes a resource for vibrational state engineering and nanoscale nonlinear optics. The purpose of this Perspective is to clarify the connection between the languages and parameters used in the fields of molecular cavity optomechanics (McOM) versus its conventional, “macroscopic” counterpart and to summarize the main results achieved so far in McOM and the most pressing experimental and theoretical challenges. We aim to make the theoretical framework of molecular cavity optomechanics practically usable for the SERS and nanoplasmonics community at large. While quality factors (Q) and mode volumes (V) essentially describe the performance of a nanocavity in enhancing light-matter interaction, we point to the light-cavity coupling efficiencies (η) and optomechanical cooperativities (
𝒞
) as the key parameters for molecular optomechanics. As an illustration of the significance of these quantities, we investigate the feasibility of observing optomechanically induced transparency with a molecular vibration─a measurement that would allow for a direct estimate of the optomechanical cooperativity.
en
dc.format.extent
16 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Plasmonic antennas
en
dc.subject
Surface-enhanced Raman scattering
en
dc.subject
Cavity optomechanics
en
dc.subject
Molecular vibrations
en
dc.subject
Raman spectroscopy
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Nanocavities for Molecular Optomechanics: Their Fundamental Description and Applications
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/acsphotonics.4c01548
dcterms.bibliographicCitation.journaltitle
ACS Photonics
dcterms.bibliographicCitation.number
11
dcterms.bibliographicCitation.pagestart
4486
dcterms.bibliographicCitation.pageend
4501
dcterms.bibliographicCitation.volume
2024
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acsphotonics.4c01548
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2330-4022
refubium.resourceType.provider
WoS-Alert