dc.contributor.author
Dowling, Neil
dc.contributor.author
Modi, Kavan
dc.contributor.author
Muñoz, Roberto N.
dc.contributor.author
Singh, Sukhbinder
dc.contributor.author
White, Gregory A. L.
dc.date.accessioned
2024-12-04T13:39:37Z
dc.date.available
2024-12-04T13:39:37Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45859
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45572
dc.description.abstract
We introduce a class of quantum non-Markovian processes—dubbed process trees—that exhibit polynomially decaying temporal correlations and memory distributed across timescales. This class of processes is described by a tensor network with treelike geometry whose component tensors are (1) causality-preserving maps (superprocesses) and (2) locality-preserving temporal change-of-scale transformations. We show that the long-range correlations in this class of processes tends to originate almost entirely from memory effects and can accommodate genuinely quantum power-law correlations in time. Importantly, this class allows efficient computation of multitime correlation functions. To showcase the potential utility of this model-agnostic class for numerical simulation of physical models, we show how it can efficiently approximate the strong memory dynamics of the paradigmatic spin-boson model, in terms of arbitrary multitime features. In contrast to an equivalently costly matrix-product-operator representation, the ansatz produces a fiducial characterization of the relevant physics. Finally, leveraging 2D tensor-network renormalization-group methods, we detail an algorithm for deriving a process tree from an underlying Hamiltonian via the Feynmann-Vernon influence functional. Our work lays the foundation for the development of more efficient numerical techniques in the field of strongly interacting open quantum systems, as well as the theoretical development of a temporal renormalization-group scheme.
en
dc.format.extent
32 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Complex systems
en
dc.subject
Open quantum systems
en
dc.subject
Quantum correlations in quantum information
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Capturing Long-Range Memory Structures with Tree-Geometry Process Tensors
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
041018
dcterms.bibliographicCitation.doi
10.1103/PhysRevX.14.041018
dcterms.bibliographicCitation.journaltitle
Physical Review X
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.volume
14
dcterms.bibliographicCitation.url
https://doi.org/10.1103/PhysRevX.14.041018
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2160-3308
refubium.resourceType.provider
WoS-Alert