dc.contributor.author
Triebkorn, Paul
dc.contributor.author
Stefanovski, Leon
dc.contributor.author
Dhindsa, Kiret
dc.contributor.author
Diaz‐Cortes, Margarita‐Arimatea
dc.contributor.author
Bey, Patrik
dc.contributor.author
Bülau, Konstantin
dc.contributor.author
Pai, Roopa
dc.contributor.author
Spiegler, Andreas
dc.contributor.author
Solodkin, Ana
dc.contributor.author
Jirsa, Viktor
dc.contributor.author
McIntosh, Anthony Randal
dc.contributor.author
Ritter, Petra
dc.contributor.author
Alzheimer's Disease Neuroimaging Initiative
dc.date.accessioned
2024-12-02T16:38:35Z
dc.date.available
2024-12-02T16:38:35Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45798
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45511
dc.description.abstract
Introduction: Computational brain network modeling using The Virtual Brain (TVB) simulation platform acts synergistically with machine learning (ML) and multi-modal neuroimaging to reveal mechanisms and improve diagnostics in Alzheimer's disease (AD).
Methods: We enhance large-scale whole-brain simulation in TVB with a cause-and-effect model linking local amyloid beta (A beta) positron emission tomography (PET) with altered excitability. We use PET and magnetic resonance imaging (MRI) data from 33 participants of the Alzheimer's Disease Neuroimaging Initiative (ADNI3) combined with frequency compositions of TVB-simulated local field potentials (LFP) for ML classification.
Results: The combination of empirical neuroimaging features and simulated LFPs significantly outperformed the classification accuracy of empirical data alone by about 10% (weighted F1-score empirical 64.34% vs. combined 74.28%). Informative features showed high biological plausibility regarding the AD-typical spatial distribution.
Discussion: The cause-and-effect implementation of local hyperexcitation caused by A beta can improve the ML-driven classification of AD and demonstrates TVB's ability to decode information in empirical data using connectivity-based brain simulation.
en
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
Alzheimer's disease
en
dc.subject
machine learning
en
dc.subject
multi-scale brain simulation
en
dc.subject
positron emission tomography
en
dc.subject
The Virtual Brain
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Brain simulation augments machine‐learning–based classification of dementia
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e12303
dcterms.bibliographicCitation.doi
10.1002/trc2.12303
dcterms.bibliographicCitation.journaltitle
Alzheimer's & Dementia: Translational Research & Clinical Interventions
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.originalpublishername
Wiley
dcterms.bibliographicCitation.volume
8
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.funding
DEAL Wiley
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
35601598
dcterms.isPartOf.eissn
2352-8737