dc.contributor.author
Miller, Daniel
dc.contributor.author
Fischer, Laurin E.
dc.contributor.author
Levi, Kyano
dc.contributor.author
Kuehnke, Eric J.
dc.contributor.author
Sokolov, Igor O.
dc.contributor.author
Barkoutsos, Panagiotis Kl.
dc.contributor.author
Eisert, Jens
dc.contributor.author
Tavernelli, Ivano
dc.date.accessioned
2024-11-25T07:24:21Z
dc.date.available
2024-11-25T07:24:21Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45734
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45447
dc.description.abstract
A central building block of many quantum algorithms is the diagonalization of Pauli operators. Although it is always possible to construct a quantum circuit that simultaneously diagonalizes a given set of commuting Pauli operators, only resource-efficient circuits can be executed reliably on near-term quantum computers. Generic diagonalization circuits, in contrast, often lead to an unaffordable SWAP gate overhead on quantum devices with limited hardware connectivity. A common alternative is to exclude two-qubit gates altogether. However, this comes at the severe cost of restricting the class of diagonalizable sets of Pauli operators to tensor product bases (TPBs). In this article, we introduce a theoretical framework for constructing hardware-tailored (HT) diagonalization circuits. Our framework establishes a systematic and highly flexible procedure for tailoring diagonalization circuits with ultra-low gate counts. We highlight promising use cases of our framework and – as a proof-of-principle application – we devise an efficient algorithm for grouping the Pauli operators of a given Hamiltonian into jointly-HT-diagonalizable sets. For several classes of Hamiltonians, we observe that our approach requires fewer measurements than conventional TPB approaches. Finally, we experimentally demonstrate that HT circuits can improve the efficiency of estimating expectation values with cloud-based quantum computers.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Information theory
en
dc.subject
Quantum information
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Hardware-tailored diagonalization circuits
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
122
dcterms.bibliographicCitation.doi
10.1038/s41534-024-00901-1
dcterms.bibliographicCitation.journaltitle
npj Quantum Information
dcterms.bibliographicCitation.volume
10
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41534-024-00901-1
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme

refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2056-6387