dc.contributor.author
Gonschior, Hannes
dc.contributor.author
Schmied, Christopher
dc.contributor.author
Van der Veen, Rozemarijn Eva
dc.contributor.author
Eichhorst, Jenny
dc.contributor.author
Himmerkus, Nina
dc.contributor.author
Piontek, Jörg
dc.contributor.author
Günzel, Dorothee
dc.contributor.author
Bleich, Markus
dc.contributor.author
Furuse, Mikio
dc.contributor.author
Haucke, Volker
dc.contributor.author
Lehmann, Martin
dc.date.accessioned
2024-11-18T07:21:04Z
dc.date.available
2024-11-18T07:21:04Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45678
dc.description.abstract
The paracellular passage of ions and small molecules across epithelia is controlled by tight junctions, complex meshworks of claudin polymers that form tight seals between neighboring cells. How the nanoscale architecture of tight junction meshworks enables paracellular passage of specific ions or small molecules without compromising barrier function is unknown. Here we combine super-resolution stimulated emission depletion microscopy in live and fixed cells and tissues, multivariate classification of super-resolution images and fluorescence resonance energy transfer to reveal the nanoscale organization of tight junctions formed by mammalian claudins. We show that only a subset of claudins can assemble into characteristic homotypic meshworks, whereas tight junctions formed by multiple claudins display nanoscale organization principles of intermixing, integration, induction, segregation, and exclusion of strand assemblies. Interestingly, channel-forming claudins are spatially segregated from barrier-forming claudins via determinants mainly encoded in their extracellular domains also known to harbor mutations leading to human diseases. Electrophysiological analysis of claudins in epithelial cells suggests that nanoscale segregation of distinct channel-forming claudins enables barrier function combined with specific paracellular ion flux across tight junctions.
en
dc.format.extent
20 Seiten
dc.rights
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Super-resolution microscopy
en
dc.subject
Tight junctions
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Nanoscale segregation of channel and barrier claudins enables paracellular ion flux
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2024-11-15T09:08:30Z
dcterms.bibliographicCitation.articlenumber
4985
dcterms.bibliographicCitation.doi
10.1038/s41467-022-32533-4
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
13
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-022-32533-4
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723