dc.contributor.author
Zaporozhets, Iryna
dc.contributor.author
Musil, Félix
dc.contributor.author
Kapil, Venkat
dc.contributor.author
Clementi, Cecilia
dc.date.accessioned
2024-11-06T10:04:43Z
dc.date.available
2024-11-06T10:04:43Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45550
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45262
dc.description.abstract
The contribution of nuclear quantum effects (NQEs) to the properties of various hydrogen-bound systems, including biomolecules, is increasingly recognized. Despite the development of many acceleration techniques, the computational overhead of incorporating NQEs in complex systems is sizable, particularly at low temperatures. In this work, we leverage deep learning and multiscale coarse-graining techniques to mitigate the computational burden of path integral molecular dynamics (PIMD). In particular, we employ a machine-learned potential to accurately represent corrections to classical potentials, thereby significantly reducing the computational cost of simulating NQEs. We validate our approach using four distinct systems: Morse potential, Zundel cation, single water molecule, and bulk water. Our framework allows us to accurately compute position-dependent static properties, as demonstrated by the excellent agreement obtained between the machine-learned potential and computationally intensive PIMD calculations, even in the presence of strong NQEs. This approach opens the way to the development of transferable machine-learned potentials capable of accurately reproducing NQEs in a wide range of molecular systems.
en
dc.format.extent
10 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
nuclear quantum effects
en
dc.subject
nuclear quantum statistics
en
dc.subject
classical effective potentials
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Accurate nuclear quantum statistics on machine-learned classical effective potentials
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
134102
dcterms.bibliographicCitation.doi
10.1063/5.0226764
dcterms.bibliographicCitation.journaltitle
The Journal of Chemical Physics
dcterms.bibliographicCitation.number
13
dcterms.bibliographicCitation.volume
161
dcterms.bibliographicCitation.url
https://doi.org/10.1063/5.0226764
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1089-7690
refubium.resourceType.provider
WoS-Alert