dc.contributor.author
Dai, Kaiyi
dc.contributor.author
Luo, Xi-Zi
dc.contributor.author
Zhu, Meng-Hua
dc.contributor.author
Collins, Gareth S.
dc.contributor.author
Davison, Thomas M.
dc.contributor.author
Luther, Robert
dc.contributor.author
Wünnemann, Kai
dc.date.accessioned
2024-11-06T09:17:32Z
dc.date.available
2024-11-06T09:17:32Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45547
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45259
dc.description.abstract
Asteroids pose potential hazards to Earth. The recent NASA Double Asteroid Redirection Test mission successfully demonstrated the change of an asteroid's orbit by a kinetic impactor. This study focuses on impact-induced vertical momentum transfer efficiency (β − 1) considering various impact angles and subsurface boulder arrangements. Utilizing the iSALE-3D shock physics code, we simulate oblique impacts on different subsurface boulder configurations. Our results show that vertical ejecta momentum decreases with obliquity, with buried boulders inducing an anti-armoring effect. We define the direct impact-contacted boulder as the primary boulder and the surrounding boulders as secondary. The anti-armoring effect is most pronounced when the primary boulder is just below the surface, amplifying β – 1 by 50%. Impact angles between 60° and 75° exhibit a critical drop in ejecta momentum. An in-depth exploration of subsurface boulder arrangements reveals that secondary boulders have a minimal effect on vertical momentum transfer efficiency. Varying the size and separation of secondary boulders suggests that these subsurface features can either enhance or diminish the overall β − 1, providing insights into the dynamics of rubble-pile asteroids. In addition, impact melting is explored in our simulations, which suggests a minimal melt retention on Dimorphos's surface. Volumes of retained melt differ by an order of magnitude for impacts on the homogeneous regolith and on targets with buried boulders. In summary, this study provides insights into the effect of subsurface boulders and impact angles on vertical momentum transfer efficiency, which is crucial for understanding asteroid deflection by a kinetic impactor.
en
dc.format.extent
19 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Impact phenomena
en
dc.subject
Planetary surfaces
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::520 Astronomie::520 Astronomie und zugeordnete Wissenschaften
dc.title
Impact Momentum Transfer—Insights from Numerical Simulation of Impacts on Large Boulders of Asteroids
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
214
dcterms.bibliographicCitation.doi
10.3847/PSJ/ad72eb
dcterms.bibliographicCitation.journaltitle
The Planetary Science Journal
dcterms.bibliographicCitation.number
9
dcterms.bibliographicCitation.volume
5
dcterms.bibliographicCitation.url
https://doi.org/10.3847/PSJ/ad72eb
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Planetologie und Fernerkundung

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2632-3338
refubium.resourceType.provider
WoS-Alert