dc.contributor.author
Rühling, Marcel
dc.contributor.author
Kersting, Louise
dc.contributor.author
Wagner, Fabienne
dc.contributor.author
Schumacher, Fabian
dc.contributor.author
Wigger, Dominik
dc.contributor.author
Helmerich, Dominic A.
dc.contributor.author
Pfeuffer, Tom
dc.contributor.author
Elflein, Robin
dc.contributor.author
Kappe, Christian
dc.contributor.author
Kleuser, Burkhard
dc.date.accessioned
2024-11-05T12:44:52Z
dc.date.available
2024-11-05T12:44:52Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45514
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45226
dc.description.abstract
Sphingomyelin is a key molecule of sphingolipid metabolism, and its enzymatic breakdown is associated with various infectious diseases. Here, we introduce trifunctional sphingomyelin derivatives that enable the visualization of sphingomyelin distribution and sphingomyelinase activity in infection processes. We demonstrate this by determining the activity of a bacterial sphingomyelinase on the plasma membrane of host cells using a combination of Förster resonance energy transfer and expansion microscopy. We further use our trifunctional sphingomyelin probes to visualize their metabolic state during infections with Chlamydia trachomatis and thereby show that chlamydial inclusions primarily contain the cleaved forms of the molecules. Using expansion microscopy, we observe that the proportion of metabolized molecules increases during maturation from reticulate to elementary bodies, indicating different membrane compositions between the two chlamydial developmental forms. Expansion microscopy of trifunctional sphingomyelins thus provides a powerful microscopy tool to analyze sphingomyelin metabolism in cells at nanoscale resolution.
en
dc.format.extent
16 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Chemical tools
en
dc.subject
Sphingolipids
en
dc.subject
sphingomyelin
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Trifunctional sphingomyelin derivatives enable nanoscale resolution of sphingomyelin turnover in physiological and infection processes via expansion microscopy
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
7456
dcterms.bibliographicCitation.doi
10.1038/s41467-024-51874-w
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
15
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-024-51874-w
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Pharmazie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723
refubium.resourceType.provider
WoS-Alert