dc.contributor.author
Egger, J. A.
dc.contributor.author
Osborn, H. P.
dc.contributor.author
Kubyshkina, D.
dc.contributor.author
Mordasini, C.
dc.contributor.author
Alibert, Y.
dc.contributor.author
Günther, M. N.
dc.contributor.author
Lendl, M.
dc.contributor.author
Brandeker, Alexis
dc.contributor.author
Heitzmann, A.
dc.contributor.author
Rauer, Heike
dc.date.accessioned
2024-10-23T12:45:14Z
dc.date.available
2024-10-23T12:45:14Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45397
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45109
dc.description.abstract
Multiplanetary systems spanning the radius valley are ideal testing grounds for exploring the different proposed explanations for the observed bimodality in the radius distribution of close-in exoplanets. One such system is HIP 29442 (TOI-469), an evolved K0V star hosting two super-Earths and one sub-Neptune. We observed HIP 29442 with CHEOPS for a total of 9.6 days, which we modelled jointly with two sectors of TESS data to derive planetary radii of 3.410 ± 0.046, 1.551 ± 0.045, and 1.538 ± 0.049 R⊕ for planets b, c, and d, which orbit HIP 29442 with periods of 13.6, 3.5, and 6.4 days, respectively. For planet d this value deviates by more than 3σ from the median value reported in the discovery paper, leading us to conclude that caution is required when using TESS photometry to determine the radii of small planets with low per-transit signal-to-noise ratios and large gaps between observations. Given the high precision of these new radii, combining them with published RVs from ESPRESSO and HIRES provides us with ideal conditions to investigate the internal structure and formation pathways of the planets in the system. We introduced the publicly available code plaNETic, a fast and robust neural network-based Bayesian internal structure modelling framework. We then applied hydrodynamic models to explore the upper atmospheric properties of these inferred structures. Finally, we identified planetary system analogues in a synthetic population generated with the Bern model for planet formation and evolution. Based on this analysis, we find that the planets likely formed on opposing sides of the water iceline from a protoplanetary disk with an intermediate solid mass. We finally report that the observed parameters of the HIP 29442 system are compatible with a scenario where the second peak in the bimodal radius distribution corresponds to sub-Neptunes with a pure H/He envelope and with a scenario with water-rich sub-Neptunes.
en
dc.format.extent
30 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
techniques: photometric
en
dc.subject
planets and satellites: formation
en
dc.subject
planets and satellites: interiors
en
dc.subject
planets and satellites: individual: HIP 29442
en
dc.subject
planetary systems
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::520 Astronomie::520 Astronomie und zugeordnete Wissenschaften
dc.title
Unveiling the internal structure and formation history of the three planets transiting HIP 29442 (TOI-469) with CHEOPS
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
A223
dcterms.bibliographicCitation.doi
10.1051/0004-6361/202450472
dcterms.bibliographicCitation.journaltitle
Astronomy & Astrophysics
dcterms.bibliographicCitation.volume
688
dcterms.bibliographicCitation.url
https://doi.org/10.1051/0004-6361/202450472
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Planetologie und Fernerkundung

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1432-0746
refubium.resourceType.provider
WoS-Alert