dc.contributor.author
Schäfer, Jannika
dc.contributor.author
Winiwarter, Lukas
dc.contributor.author
Weiser, Hannah
dc.contributor.author
Höfle, Bernhard
dc.contributor.author
Schmidtlein, Sebastian
dc.contributor.author
Novotný, Jan
dc.contributor.author
Krok, Grzegorz
dc.contributor.author
Stereńczak, Krzysztof
dc.contributor.author
Hollaus, Markus
dc.contributor.author
Fassnacht, Fabian Ewald
dc.date.accessioned
2024-11-20T09:11:21Z
dc.date.available
2024-11-20T09:11:21Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45382
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45094
dc.description.abstract
This study presents a new approach for predicting forest aboveground biomass (AGB) from airborne laser scanning (ALS) data: AGB is predicted from sequences of images depicting vertical cross-sections through the ALS point clouds. A 3D version of the VGG16 convolutional neural network (CNN) with initial weights transferred from pre-training on the ImageNet dataset was used. The approach was tested on datasets from Canada, Poland, and the Czech Republic. To analyse the effect of training sample size on model performance, different-sized samples ranging from 10 to 375 ground plots were used. The CNNs were compared with random forest models (RFs) trained on point cloud metrics. At the maximum number of training samples, the difference in RMSE between observed and predicted AGB of CNNs and RFs ranged from −2 t/ha to 5 t/ha, and the difference in squared Pearson correlation coefficient ranged from −0.05 to 0.06. Additional pre-training on synthetic data derived from virtual laser scanning of simulated forest stands could only improve the prediction performance of the CNNs when only a few real training samples (10–40) were available. While 3D CNNs trained on cross-section images derived from real data showed promising results, RFs remain a competitive alternative.
en
dc.format.extent
18 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
airborne laser scanning (ALS)
en
dc.subject
deep learning
en
dc.subject
random forest
en
dc.subject
virtual laser scanning
en
dc.subject
synthetic data
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
CNN-based transfer learning for forest aboveground biomass prediction from ALS point cloud tomography
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2396932
dcterms.bibliographicCitation.doi
10.1080/22797254.2024.2396932
dcterms.bibliographicCitation.journaltitle
European Journal of Remote Sensing
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
57
dcterms.bibliographicCitation.url
https://doi.org/10.1080/22797254.2024.2396932
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Fernerkundung und Geoinformatik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
refubium.resourceType.provider
WoS-Alert