dc.contributor.author
Abiuso, Paolo
dc.contributor.author
Erdman, Paolo Andrea
dc.contributor.author
Ronen, Michael
dc.contributor.author
Noé, Frank
dc.contributor.author
Haack, Géraldine
dc.contributor.author
Perarnau-Llobet, Martí
dc.date.accessioned
2024-10-23T07:32:16Z
dc.date.available
2024-10-23T07:32:16Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45379
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45091
dc.description.abstract
The heat capacity of a given probe is a fundamental quantity that determines, among other properties, the maximum precision in temperature estimation. In turn, is limited by a quadratic scaling with the number of constituents of the probe, which provides a fundamental limit in quantum thermometry. Achieving this fundamental bound with realistic probes, i.e. experimentally amenable, remains an open problem. In this work, we tackle the problem of engineering optimal thermometers by using networks of spins. Restricting ourselves to two-body interactions, we derive general properties of the optimal configurations and exploit machine-learning techniques to find the optimal couplings. This leads to simple architectures, which we show analytically to approximate the theoretical maximal value of and maintain the optimal scaling for short- and long-range interactions. Our models can be encoded in currently available quantum annealers, and find application in other tasks requiring Hamiltonian engineering, ranging from quantum heat engines to adiabatic Grover's search.
en
dc.format.extent
31 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
spin networks
en
dc.subject
heat capacity
en
dc.subject
quantum annealers
en
dc.subject
Heisenberg scaling
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Optimal thermometers with spin networks
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
035008
dcterms.bibliographicCitation.doi
10.1088/2058-9565/ad37d3
dcterms.bibliographicCitation.journaltitle
Quantum Science and Technology
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.volume
9
dcterms.bibliographicCitation.url
https://doi.org/10.1088/2058-9565/ad37d3
refubium.affiliation
Mathematik und Informatik
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2058-9565
refubium.resourceType.provider
WoS-Alert