dc.contributor.author
Pietz, Tobias
dc.contributor.author
Gupta, Sukrit
dc.contributor.author
Schlaffner, Christoph N.
dc.contributor.author
Ahmed, Saima
dc.contributor.author
Steen, Hanno
dc.contributor.author
Renard, Bernhard Y.
dc.contributor.author
Baum, Katharina
dc.date.accessioned
2024-10-22T13:35:05Z
dc.date.available
2024-10-22T13:35:05Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45368
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45080
dc.description.abstract
Motivation
Accurate quantitative information about protein abundance is crucial for understanding a biological system and its dynamics. Protein abundance is commonly estimated using label-free, bottom-up mass spectrometry (MS) protocols. Here, proteins are digested into peptides before quantification via MS. However, missing peptide abundance values, which can make up more than 50% of all abundance values, are a common issue. They result in missing protein abundance values, which then hinder accurate and reliable downstream analyses.
Results
To impute missing abundance values, we propose PEPerMINT, a graph neural network model working directly on the peptide level that flexibly takes both peptide-to-protein relationships in a graph format as well as amino acid sequence information into account. We benchmark our method against 11 common imputation methods on 6 diverse datasets, including cell lines, tissue, and plasma samples. We observe that PEPerMINT consistently outperforms other imputation methods. Its prediction performance remains high for varying degrees of missingness, different evaluation approaches, and differential expression prediction. As an additional novel feature, PEPerMINT provides meaningful uncertainty estimates and allows for tailoring imputation to the user’s needs based on the reliability of imputed values.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
peptide abundance imputation
en
dc.subject
mass spectrometry-based proteomics
en
dc.subject
graph neural networks
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
PEPerMINT: peptide abundance imputation in mass spectrometry-based proteomics using graph neural networks
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1093/bioinformatics/btae389
dcterms.bibliographicCitation.journaltitle
Bioinformatics
dcterms.bibliographicCitation.number
Supplement_2
dcterms.bibliographicCitation.pagestart
ii70
dcterms.bibliographicCitation.pageend
ii78
dcterms.bibliographicCitation.volume
40
dcterms.bibliographicCitation.url
https://doi.org/10.1093/bioinformatics/btae389
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1367-4811
refubium.resourceType.provider
WoS-Alert