dc.contributor.author
Zhang, Junyao
dc.contributor.author
Marciano, Daniele
dc.contributor.author
Wang, Lei
dc.contributor.author
Wang, Weiwei
dc.contributor.author
Gossen, Manfred
dc.contributor.author
Yang, Mengting
dc.contributor.author
Peng, Tingying
dc.contributor.author
Gautrot, Julien
dc.contributor.author
Xu, Xun
dc.contributor.author
Ma, Nan
dc.date.accessioned
2024-10-22T12:46:09Z
dc.date.available
2024-10-22T12:46:09Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45362
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45074
dc.description.abstract
Lung diseases are one of the leading causes of global mortality. Advances in induced pluripotent stem cell (iPSC) differentiation have enabled the creation of bronchiolar and alveolar lung organoids, advancing research on lung conditions. Traditional Matrigel encapsulation, reliant on the spontaneous assembly and propagation of cells with limited external intervention, often results in variability and low reproducibility. The absence of hyaluronic acid (HA) in Matrigel, a key lung extracellular matrix component, limits bronchiolar and alveolar cell differentiation, reducing the efficacy and reproducibility of iPSC-derived organoid generation. To address this, a novel hybrid hydrogel combining HA and 23% Matrigel, inspired by the natural lung environment, is developed. This hydrogel offers improved biochemical support and viscoelastic properties, significantly accelerating organoid development. Within eight days, the hydrogel produces uniformly sized organoids containing both bronchiolar and alveolar epithelial cells. Increased levels of active mechanosensors and transducers, including PIEZO1, Integrin, and Myosin, suggest that the hydrogel's altered viscoelasticity triggers a mechanotransduction cascade. This bioinspired hydrogel provides a robust, fast model for biomedical research, facilitating rapid drug screening, respiratory disease treatment studies, and surfactant trafficking investigations. Furthermore, it enables the exploration of underlying biomechanical mechanisms to enhance the controllability of organoid generation and maturation.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
biomechanics
en
dc.subject
hyaluronic acid (HA)
en
dc.subject
lung organoid
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Bioinspired Hyaluronic Acid-Based Hydrogel Fuels Bi-Directional Lung Organoid Maturation via PIEZO1 and ITGB1 Mediated Mechanosensation
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2400194
dcterms.bibliographicCitation.doi
10.1002/admi.202400194
dcterms.bibliographicCitation.journaltitle
Advanced Materials Interfaces
dcterms.bibliographicCitation.number
28
dcterms.bibliographicCitation.volume
11
dcterms.bibliographicCitation.url
https://doi.org/10.1002/admi.202400194
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2196-7350
refubium.resourceType.provider
WoS-Alert