dc.contributor.author
Stengl, Marian
dc.contributor.author
Gelß, Patrick
dc.contributor.author
Klus, Stefan
dc.contributor.author
Pokutta, Sebastian
dc.date.accessioned
2024-10-22T12:38:51Z
dc.date.available
2024-10-22T12:38:51Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45361
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45073
dc.description.abstract
The Koopman–von Neumann equation describes the evolution of a complex-valued wavefunction corresponding to the probability distribution given by an associated classical Liouville equation. Typically, it is defined on the whole Euclidean space. The investigation of bounded domains, particularly in practical scenarios involving quantum-based simulations of dynamical systems, has received little attention so far. We consider the Koopman–von Neumann equation associated with an ordinary differential equation on a bounded domain whose trajectories are contained in the set's closure. Our main results are the construction of a strongly continuous semigroup together with the existence and uniqueness of solutions of the associated initial value problem. To this end, a functional-analytic framework connected to Sobolev spaces is proposed and analyzed. Moreover, the connection of the Koopman–von Neumann framework to transport equations is highlighted.
en
dc.format.extent
30 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
dynamical systems
en
dc.subject
transfer operators
en
dc.subject
evolution equations
en
dc.subject
Koopman–von Neumann mechanics
en
dc.subject
Perron–Frobenius–Sobolev space
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Existence and uniqueness of solutions of the Koopman–von Neumann equation on bounded domains
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
395302
dcterms.bibliographicCitation.doi
10.1088/1751-8121/ad6f7d
dcterms.bibliographicCitation.journaltitle
Journal of Physics A: Mathematical and Theoretical
dcterms.bibliographicCitation.number
39
dcterms.bibliographicCitation.volume
57
dcterms.bibliographicCitation.url
https://doi.org/10.1088/1751-8121/ad6f7d
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1751-8121
refubium.resourceType.provider
WoS-Alert