dc.contributor.author
Schmalholz, Stefan M.
dc.contributor.author
Khakimova, Lyudmila
dc.contributor.author
Podladchikov, Yury
dc.contributor.author
Bras, Erwan
dc.contributor.author
Yamato, Philippe
dc.contributor.author
John, Timm
dc.date.accessioned
2024-10-22T12:25:07Z
dc.date.available
2024-10-22T12:25:07Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45359
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45071
dc.description.abstract
Hydration and dehydration reactions play pivotal roles in plate tectonics and the deep water cycle, yet many facets of (de)hydration reactions remain unclear. Here, we study (de)hydration reactions where associated solid density changes are predominantly balanced by porosity changes, with solid rock deformation playing a minor role. We propose a hypothesis for three scenarios of (de)hydration front propagation and test it using one-dimensional hydro-mechanical-chemical models. Our models couple porous fluid flow, solid rock volumetric deformation, and (de)hydration reactions described by equilibrium thermodynamics. We couple our transport model with reactions through fluid pressure: the fluid pressure gradient governs porous flow and the fluid pressure magnitude controls the reaction boundary. Our model validates the hypothesized scenarios and shows that the change in solid density across the reaction boundary, from lower to higher pressure, dictates whether hydration or dehydration fronts propagate: decreasing solid density causes dehydration front propagation in the direction opposite to fluid flow while increasing solid density enables both hydration and dehydration front propagation in the same direction as fluid flow. Our models demonstrate that reactions can drive the propagation of (de)hydration fronts, characterized by sharp porosity fronts, into a viscous medium with zero porosity and permeability; such propagation is impossible without reactions, as porosity fronts become trapped. We apply our model to serpentinite dehydration reactions with positive and negative Clapeyron slopes and granulite hydration (eclogitization). We use the results of systematic numerical simulations to derive a new equation that allows estimating the transient, reaction-induced permeability of natural (de)hydration zones.
en
dc.format.extent
37 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
numerical modeling
en
dc.subject
hydro-mechanical-chemical model
en
dc.subject
permeability
en
dc.subject
reaction front
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
(De)hydration Front Propagation Into Zero-Permeability Rock
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e2023GC011422
dcterms.bibliographicCitation.doi
10.1029/2023GC011422
dcterms.bibliographicCitation.journaltitle
Geochemistry, Geophysics, Geosystems
dcterms.bibliographicCitation.number
9
dcterms.bibliographicCitation.volume
25
dcterms.bibliographicCitation.url
https://doi.org/10.1029/2023GC011422
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Geochemie, Hydrogeologie, Mineralogie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1525-2027
refubium.resourceType.provider
WoS-Alert